A fractured microstructure design: A new type of piezoresistive sensor with ultra-high-pressure sensitivity (0.26 kPa(-1) ) in low pressure range (<2 kPa) and minimum detectable pressure of 9 Pa has been fabricated using a fractured microstructure design in a graphene-nanosheet-wrapped polyurethane (PU) sponge. This low-cost and easily scalable graphene-wrapped PU sponge pressure sensor has potential application in high-spatial-resolution, artificial skin without complex nanostructure design.
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) is a special reflecting Schmidt telescope. LAMOST's special design allows both a large aperture (effective aperture of 3.6 m-4.9 m) and a wide field of view (FOV) (5 • ). It has an innovative active reflecting Schmidt configuration which continuously changes the mirror's surface that adjusts during the observation process and combines thin deformable mirror active optics with segmented active optics. Its primary mirror (6.67 m×6.05 m) and active Schmidt mirror (5.74 m×4.40 m) are both segmented, and composed of 37 and 24 hexagonal sub-mirrors respectively. By using a parallel controllable fiber positioning technique, the focal surface of 1.75 m in diameter can accommodate 4000 optical fibers. Also, LAMOST has 16 spectrographs with 32 CCD cameras. LAMOST will be the telescope with the highest rate of spectral acquisition. As a national large scientific project, the LAMOST project was formally proposed in 1996, and approved by the Chinese government in 1997. The construction started in 2001, was completed in 2008 and passed the official acceptance in June 2009. The LAMOST pilot survey was started in October 2011 and the spectroscopic survey will launch in September 2012. Up to now, LAMOST has released more than 480 000 spectra of objects. LAMOST will make an important contribution to the study of the large-scale structure of the Universe, structure and evolution of the Galaxy, and cross-identification of multiwaveband properties in celestial objects.
Lithium metal is one of the most attractive anode materials for next-generation lithium batteries due to its high specific capacity and low electrochemical potential. However, the poor cycling performance and serious safety hazards, caused by the growth of dendritic and mossy lithium, has long hindered the application of lithium metal based batteries. Herein, we reported a rational design of free-standing Cu nanowire (CuNW) network to suppress the growth of dendritic lithium via accommodating the lithium metal in three-dimensional (3D) nanostructures. We demonstrated that as high as 7.5 mA h cm(-2) of lithium can be plated into the free-standing copper nanowire (CuNW) current collector without the growth of dendritic lithium. The lithium metal anode based on the CuNW exhibited high Coulombic efficiency (average 98.6% during 200 cycles) and outstanding rate performance owing to the suppression of lithium dendrite growth and high conductivity of CuNW network. Our results demonstrate that the rational nanostructural design of current collector could be a promising strategy to improve the performance of lithium metal anode enabling its application in next-generation lithium-metal based batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.