Lithium metal is one of the most attractive anode materials for next-generation lithium batteries due to its high specific capacity and low electrochemical potential. However, the poor cycling performance and serious safety hazards, caused by the growth of dendritic and mossy lithium, has long hindered the application of lithium metal based batteries. Herein, we reported a rational design of free-standing Cu nanowire (CuNW) network to suppress the growth of dendritic lithium via accommodating the lithium metal in three-dimensional (3D) nanostructures. We demonstrated that as high as 7.5 mA h cm(-2) of lithium can be plated into the free-standing copper nanowire (CuNW) current collector without the growth of dendritic lithium. The lithium metal anode based on the CuNW exhibited high Coulombic efficiency (average 98.6% during 200 cycles) and outstanding rate performance owing to the suppression of lithium dendrite growth and high conductivity of CuNW network. Our results demonstrate that the rational nanostructural design of current collector could be a promising strategy to improve the performance of lithium metal anode enabling its application in next-generation lithium-metal based batteries.
Lithium sulfur (Li-S) batteries are considered as promising energy storage systems for the next generation of batteries due to their high theoretical energy densities and low cost. Much effort has been made to improve the practical energy densities and cycling stability of Li-S batteries via diverse designs of materials nanostructure. However, achieving simultaneously good rate capabilities and stable cycling of Li-S batteries is still challenging. Herein, we propose a strategy to utilize a dual effect of metal carbide nanoparticles decorated on carbon nanofibers (MC NPs-CNFs) to realize high rate performance, low hysteresis, and long cycling stability of Li-S batteries in one system. The adsorption experiments of lithium polysulfides (LiPS) to MC NPs and corresponding theoretical calculations demonstrate that LiPS are likely to be adsorbed and diffused on the surface of MC NPs because of their moderate chemical bonding. MC NPs turn out to have also an electrocatalytic role and accelerate electrochemical redox reactions of LiPS, as proven by cyclic voltammetry analysis. The fabricated Li-S batteries based on the WC NPs-CNFs hybrid electrodes display not only high specific capacity of 1200 mAh/g at 0.2C but also excellent rate performance and cycling stability, for example, a model setup can be operated at 1C for 500 cycles maintaining a final specific capacity of 605 mAh/g with a degradation rate as low as 0.06%/cycle.
Ultrathick electrode design is a promising strategy to enhance the specific energy of Li-ion batteries (LIBs) without changing the underlying materials chemistry. However, the low Li-ion conductivity caused by ultralong Li-ion transport pathway in traditional random microstructured electrode heavily deteriorates the rate performance of ultrathick electrodes. Herein, inspired by the vertical microchannels in natural wood as the highway for water transport, the microstructures of wood are successfully duplicated into ultrathick bulk LiCoO (LCO) cathode via a sol-gel process to achieve the high areal capacity and excellent rate capability. The X-ray-based microtomography demonstrates that the uniform microchannels are built up throughout the whole wood-templated LCO cathode bringing in 1.5 times lower of tortuosity and ≈2 times higher of Li-ion conductivity compared to that of random structured LCO cathode. The fabricated wood-inspired LCO cathode delivers high areal capacity up to 22.7 mAh cm (five times of the existing electrode) and achieves the dynamic stress test at such high areal capacity for the first time. The reported wood-inspired design will open a new avenue to adopt natural hierarchical structures to improve the performance of LIBs.
Resorcinol-formaldehyde (RF) and graphene oxide (GO) aerogels have found a variety of applications owing to their excellent properties and remarkable flexibility. However, the macroscopic and controllable synthesis of their composite gels is still a great challenge. By using GO sheets as template skeletons and metal ions (Co(2+), Ni(2+), or Ca(2+)) as catalysts and linkers, the first low-temperature scalable strategy for the synthesis of a new kind of RF-GO composite gel with tunable densities and mechanical properties was developed. The aerogels can tolerate a strain as high as 80% and quickly recover their original morphology after the compression has been released. Owing to their high compressibility, the gels might find applications in various areas, for example, as adsorbents for the removal of dye pollutants and in oil-spill cleanup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.