Capacitive deionization (CDI) is a competent water desalination technique offering an appropriate route to obtain clean water. However, a rational designed structure of the electrode materials is essentially required for achieving high CDI performance. Here, a novel sponge‐templated strategy is developed for the first time to prepare graphene sheets with high specific surface area and suitable pore size distribution. Sponge is used as the support of graphene oxide to prevent the restack of graphene sheets, as well as to suppress the agglomerate during the annealing process. Importantly, the as‐fabricated graphene sheets possess high specific surface area of 305 m2 g−1 and wide pore size distribution. Ultrahigh CDI performance, a remarkable electrosorptive capacity of 4.95 mg g−1, and siginificant desorption rate of 25 min, is achieved with the sponge‐templated prepared graphene electrodes. This work provides an effective solution for the synthesis of rational graphene architectures for general applications in CDI, energy storage and conversion.
Capacitive deionization (CDI) is a competent water desalination technique offering an appropriate route to obtain clean water. On page 3917, Y.‐M. Yan, K.‐N. Sun and co‐workers design and prepare a 3D‐structured, graphene‐based electrode using sponge (polyurethane, PU) as a template. The electrode possesses a large surface area, wide pore size distribution from nanopores to micropores, and low internal resistance, therefore exhibiting a remarkable electrosorptive capacity of 4.95 mg g−1 and a desorption rate of 25 min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.