The purpose of this research was to reduce the amount of noble metal palladium catalyst and improve the catalytic performance in the Suzuki-Miyaura cross-coupling reaction, which is the key step in the synthesis of Boscalid. Taking o-bromonitrobenzene and p-chlorophenylboronic acid as raw materials, three kinds of Pd-PEPPSI-IPr catalysts were synthesized and employed in the Suzuki reaction, and then the biaryl product was subjected to reduction and condensation reaction to prepare Boscalid. Under optimal reaction conditions, the result showed that the catalytic system exhibits highest catalytic efficiency under aerobic conditions, giving the 2-(4-chlorophenyl)nitrobenzene over 99 % yield. Moreover, the Pd-PEPPSI-IPrDtBu-An catalyst was minimized to 0.01mol%. The synthesis process was mild, the post-treatment was simple, and the production cost was reduced which makes it suitable for industrial production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.