Background 5-fluorouracil (5-FU)-based chemotherapy regimen has been widely used for the treatment of gastric cancer, but meanwhile the development of chemotherapeutic resistance remains a major clinical challenge. Tumor microenvironment (TME) frequently correlates with the development of chemoresistance in human cancer. As a major component of TME, the role of tumor-associated macrophages (TAMs) in the chemoresistance of gastric cancer has not been fully elucidated. Methods Immunohistochemistry (IHC) was applied to detect the density of TAMs in clinical samples of 103 patients with gastric cancer who had undergone 5-FU-based neoadjuvant chemotherapy. 5-FU-resistant gastric cell lines MKN45-R and HGC27-R were established, macrophages were then separately co-cultured with MKN45-R, HGC27-R cells and their parental cells. The effect of gastric cancer cells on the polarization of macrophages, the biological function of M2-polaried macrophages and the mechanism for promoting 5-FU-resistance were investigated. Then the correlation between the expression of CXC motif chemokine ligand 5 (CXCL5) and the infiltration of hemoglobin scavenger receptor (CD163) positive and mannose receptor (CD206) positive macrophages was analyzed, the prognostic value of CXCL5 expression in clinical samples was further explored. Results The high infiltration of macrophages marked by CD68 in gastric cancer samples was significantly associated with the resistance of gastric cancer to chemotherapy. Gastric cancer cells could modulate macrophages to M2-like polarization through indirect co-culture, and chemoresistant cells were more efficient in inducing macrophages polarization to M2 phenotype. Co-culturing M2-polarized macrophages in turn enhanced 5-FU-resistance of gastric cancer cells, and it was further verified that CXCL5 derived from M2-polarized macrophages promoted chemoresistance through activing the PI3K/AKT/mTOR pathway. Besides, high level of CXCL5 could recruit monocytes to form more M2-polarized macrophages. Clinically, high expression of CXCL5 in gastric cancer samples was associated with the high infiltration of CD163 positive macrophages and CD206 positive macrophages, and patients with high expression of CXCL5 presented lower overall survival (OS) rates than those with low expression of CXCL5. Conclusion Interaction between TAMs and gastric cancer cells promoted chemoresistance in gastric cancer via CXCL5/PI3K/AKT/mTOR pathway. Thus, targeting TAMs and blocking the cell–cell crosstalk between TAMs and gastric cancer cells may represent prospective therapeutic strategies for patients with gastric cancer.
Background Emerging evidence suggests that rhaponticin, a stilbene monomeric compound isolated from North China rhubarb, has been shown to exhibit significant biological activity against tumors. However, the anticancer effects and mechanisms of rhaponticin in tongue squamous cell carcinoma (TSCC) remain elusive. Objective We investigated the changes of migration and invasion abilities and EMT progression of TSCC cells treated with different concentrations of rhaponticin under hypoxia, as well as the possible mechanisms, in order to initially explore the effects of rhaponticin on the biological characteristics of TSCC cells under hypoxia. Results The number of cell migration and invasion was prominently increased, E-cadherin protein was down-regulated, and N-cadherin and HIF-1α protein expression was elevated under hypoxia. Rhaponticin intervention strikingly prevented the increased abilities of migration and invasion and EMT of TSCC cells under hypoxia. This was followed by further validation finding that rhaponticin indeed leads to reduced HIF-1α post-transcriptional activity. Mechanistically, rhaponticin may bind to aryl-hydrocarbon nuclear translocator (ARNT) domain of HIF-1α. Conclusions Rhaponticin repressed the invasion and migration abilities and EMT process of TSCC cells under a hypoxic environment in vitro by targeted suppression of HIF-1α.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.