The cosmogenic radionuclide 10 Be is produced by cosmic-ray spallation in Earth's atmosphere. Its production rate is regulated by the geomagnetic field intensity, so that its accumulation rate in aeolian sediments can, in principle, be used to derive high-resolution records of geomagnetic field changes. However, 10 Be atmospheric fallout rate also varies locally depending on rainfall rate. The accumulation rate of 10 Be in sediments is further complicated by overprinting of the geomagnetic and precipitation signals by 10 Be attached to remobilized dust, which fell from the atmosphere at some time in the past.Here, we demonstrate that these signals can be deconvoluted to derive both geomagnetic field intensity and paleoprecipitation records of Asian Monsoon intensity in an 80,000-yr-long 10 Be record from Chinese loess. The strong similarity between our derived paleomagnetic intensity record and the SINT 200 (Guyodo andValet 1996) and NAPIS 75 (Laj et al. 2002) stackedmarine records suggests that this method might be used to produce multimillion-yr-long records of paleomagnetic intensity from loess. This technique also reveals a new method for extracting quantitative paleoprecipitation records from continental interior regions. Our derived precipitation record is broadly similar to the speleothem δ 18 O-based records of paleo-Asian Monsoon intensity from Dongge (Yuan et al. 2004) and Hulu (Wang et al. 2001) caves, and suggests that the paleo-Asian Monsoon intensity may be responding to a combination of both Northern and Southern Hemisphere insolation forcing.
The design of wind turbines requires information about joint data for wind and wave conditions. Moreover, combining offshore wind and wave energy facilities is a potential way to reduce the cost of offshore wind farms. To design combined offshore renewable energy concepts, it is important to choose sites where both wind and wave energy resources are substantial. This paper deals with joint environmental data for five European offshore sites which serve as basis for the analysis and comparison of combined renewable energy concepts developed in the EU FP7 project—MARINA Platform. The five sites cover both shallow and deep water, with three sites facing the Atlantic Ocean and two sites in the North Sea. The long-term joint distributions of wind and wave parameters are presented for these sites. Simultaneous hourly mean wind and wave hindcast data from 2001 to 2010 are used as a database. The joint distributions are modeled by fitting analytical distributions to the hindcast data. The long-term joint distributions can be used to estimate the wind and wave power output from each combined concept and to estimate the fatigue lifetime of the structure. The marginal distributions of wind and wave parameters are also provided. Based on the joint distributions, contour surfaces are established for combined wind and wave parameters for which the probability of exceedance corresponds to a return period of 50 years. The design points on the 50-year contour surfaces are suggested for extreme response analysis of combined concepts.
High-altitude inland-drainage lakes on the Tibetan Plateau (TP), the earth's third pole, are very sensitive to climate change. Tibetan lakes are important natural resources with important religious, historical, and cultural significance. However, the spatial patterns and processes controlling the impacts of climate and associated changes on Tibetan lakes are largely unknown. This study used long time series and multi-temporal Landsat imagery to map the patterns of Tibetan lakes and glaciers in 1977, 1990, 2000, and 2014, and further to assess the spatiotemporal changes of lakes and glaciers in 17 TP watersheds between 1977 and 2014. Spatially variable changes in lake and glacier area as well as climatic factors were analyzed. We identified four modes of lake change in response to climate and associated changes. Lake expansion was predominantly attributed to increased precipitation and glacier melting, whereas lake shrinkage was a main consequence of a drier climate or permafrost degradation. These findings shed new light on the impacts of recent environmental changes on Tibetan lakes. They suggest that protecting these high-altitude lakes in the face of further environmental change will require spatially variable policies and management measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.