Thorium-229 possesses the lowest first nuclear excited state, with an energy of approximately 8 eV. The extremely narrow linewidth of the first nuclear excited state, with an uncertainty of 53 THz, prevents direct laser excitation and realization of the nuclear clock. We present a proposal using the Coulomb crystal of a linear chain formed by $$^{229}$$ 229 Th$$^{3+}$$ 3 + ions, where the nuclei of $$^{229}$$ 229 Th$$^{3+}$$ 3 + ions in the ion trap are excited by the electronic bridge (EB) process. The 7$$P_{1/2}$$ P 1 / 2 state of the thorium-229 nuclear ground state is chosen for EB excitation. Using the two-level optical Bloch equation under experimental conditions, we calculate that 2 out of 36 prepared thorium ions in the Coulomb crystal can be excited to the first nuclear excited state, and it takes approximately 2 h to scan over an uncertainty of 0.22 eV. Taking advantage of the transition enhancement of EB and the long stability of the Coulomb crystal, the energy uncertainty of the first excited state can be limited to the order of 1 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.