During 7-8 June 1998, an organized mesoscale convective system (MCS) formed within the mei-yu frontal cloud band and moved northeastward to produce heavy rain over the island of Taiwan. During this period, the section of the mei-yu front east of Taiwan moved northward, most significantly for about 300 km over 12 h. Meanwhile, a low-level jet (LLJ) developed within the environmental southwesterly flow to the south of the mei-yu front and the MCS.Observations revealed that the front retreated as low-level meridional wind components over the postfrontal region shifted from northerly to southerly. Using European Centre for Medium-Range Weather Forecasts (ECMWF) analyses with piecewise potential vorticity (PV) inversion technique and other methods, a diagnostic study was carried out to investigate the northward frontal movement and the formation of the LLJ.Results indicated that diabatic latent heating from the MCS, large enough in scale, generated positive PV and height fall at low levels. The enhanced height gradient induced northwestward-directed ageostrophic winds and the LLJ formed southeast of the MCS through Coriolis torque. The southwesterly flow associated with this diabatic PV perturbation led to rapid retreat of the frontal segment east of Taiwan at a speed of about 25 m s Ϫ1 , while the movement was dominated by horizontal advection in the present case. During this process of readjustment toward geostrophy, a thermally indirect circulation also appeared over and south of the front, and the LLJ formed within its lower branch at 850 hPa. The enhanced southwesterly winds reached LLJ strength because they were superimposed upon a background monsoon flow at the same direction. To the lee of Taiwan, the topography also played the role in enhancing local wind speed at lower levels and contributed toward the frontal retreat at nearby regions.
The droplet digital polymerase chain reaction (ddPCR) is becoming more and more popular in diagnostic applications in academia and industry. In commercially available ddPCR systems, after they have been made by a generator, the droplets have to be transferred manually to modules for amplification and detection. In practice, some of the droplets (∼10%) are lost during manual transfer, leading to underestimation of the targets. In addition, the droplets are also at risk of cross-contamination during transfer. By contrast, in labs, some chip-based ddPCRs have been demonstrated where droplets always run in channels. However, the droplets easily coalesce to large ones in chips due to wall wetting as well as thermal oscillation. The loss of droplets becomes serious when such ddPCRs are applied to absolutely quantify rare mutations, such as in early diagnostics in clinical research or when measuring biological diversity at the cell level. Here, we propose a capillary-based integrated ddPCR system that is used for the first time to realize absolute quantification in this way. In this system, a HPLC T-junction is used to generate droplets and a long HPLC capillary connects the generator with both a capillary-based thermocycler and a capillary-based cytometer. The performance of the system is validated by absolute quantification of a gene specific to lung cancer (LunX). The results show that this system has very good linearity (0.9988) at concentrations ranging from NTC to 2.4 × 10 copies per μL. As compared to qPCR, the all-in-one scheme is superior both in terms of the detection limit and the smaller fold changes measurement. The system of ddPCR might provide a powerful approach for clinical or academic applications where rare events are mostly considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.