Ions (e.g., H 3 + , H2O+) have been used extensively to quantify the cosmic-ray ionization rate (CRIR) in diffuse sightlines. However, measurements of the CRIR in low-to-intermediate density gas environments are rare, especially when background stars are absent. In this work, we combine molecular line observations of CO, OH, CH, and HCO+ in the star-forming cloud IC 348, and chemical models to constrain the value of the CRIR and study the response of the distribution of chemical abundances. The cloud boundary is found to have an A V of approximately 4 mag. From the interior to the exterior of the cloud, the observed 13CO line intensities drop by an order of magnitude. The calculated average abundance of 12CO (assuming 12C/13C=65) is (1.2 ± 0.9) × 10−4, which decreases by a factor of 6 from the interior to the outside regions. The average abundance of CH (3.3 ± 0.7 × 10−8) is in good agreement with previous findings in diffuse and translucent clouds (A V < 5 mag). However, we did not find a decline in CH abundance in regions of high extinction (A V ≃ 8 mag) as previously reported in Taurus. By comparing the observed molecular abundances and chemical models, we find a decreasing trend of the CRIR as A V increases. The inferred CRIR of ζ cr = (4.7 ± 1.5) × 10−16 s−1 at low A V is consistent with H 3 + measurements toward two nearby massive stars.
The fast growth of supermassive black holes and their feedback to the host galaxies play an important role in regulating the evolution of galaxies, especially in the early Universe. However, due to cosmological dimming and the limited angular resolution of most observations, it is difficult to resolve the feedback from the active galactic nuclei (AGNs) to their host galaxies. Gravitational lensing, for its magnification, provides a powerful tool to spatially differentiate emission originating from AGN and host galaxy at high redshifts. Here we report a discovery of a jet-like radio structure in a strongly lensed starburst quasar, H1413+117 or Cloverleaf at redshift z = 2.56, based on observational data at optical, sub-millimetre, and radio wavelengths. With both parametric and non-parametric lens models and with reconstructed images in the source plane, we find a well-separated, kpc-scaled, single-sided radio jet located at projected ∼1.2 kpc to the northwest of the host galaxy in the source plane. This could indicate the co-existence of feedback from the AGN by both wind and jet in the Cloverleaf quasar.
Supernovae and their remnants provide energetic feedback to the ambient interstellar medium (ISM), which is often distributed in multiple gas phases. Among them, warm molecular hydrogen (H2) often dominates the cooling of the shocked molecular ISM, which has been observed with the H2 emission lines at near-infrared wavelengths. Such studies, however, were either limited in narrow filter imaging or sparsely sampled mid-infrared spectroscopic observations with relatively poor angular resolutions. Here we present near-infrared (H- and K-band) spectroscopic mosaic observations towards the A, B, C, and G regions of the supernova remnant (SNR) IC 443, with the K-band Multi-Object Spectrograph (KMOS) onboard the Very Large Telescope (VLT). We detected 20 ro-vibrational transitions of H2, one H line (Brγ), and two [Fe ii] lines, which dominate broadband images at both H- and K-band. The spatial distribution of H2 lines at all regions are clumpy on scales from ∼0.1 pc down to ∼0.008 pc. The fitted excitation temperature of H2 is between 1500 K and 2500 K, indicating warm shocked gas in these regions. The multi-gas-phase comparison shows stratified shock structures in all regions, which explains the co-existence of multiple types of shocks in the same regions. Last, we verify the candidates of young stellar objects previously identified in these regions with our spectroscopic data, and find none of them are associated with young stars. This sets challenges to the previously proposed scenario of triggered star formation by SNR shocks in IC 443.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.