Rheumatoid arthritis (RA) is an autoimmune disease that involves T and B cells and their reciprocal immune interactions with proinflammatory cytokines. T cells, an essential part of the immune system, play an important role in RA. T helper 1 (Th1) cells induce interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and interleukin (IL)-2, which are proinflammatory cytokines, leading to cartilage destruction and bone erosion. Th2 cells primarily secrete IL-4, IL-5, and IL-13, which exert anti-inflammatory and anti-osteoclastogenic effects in inflammatory arthritis models. IL-22 secreted by Th17 cells promotes the proliferation of synovial fibroblasts through induction of the chemokine C-C chemokine ligand 2 (CCL2). T follicular helper (Tfh) cells produce IL-21, which is key for B cell stimulation by the C-X-C chemokine receptor 5 (CXCR5) and coexpression with programmed cell death-1 (PD-1) and/or inducible T cell costimulator (ICOS). PD-1 inhibits T cell proliferation and cytokine production. In addition, there are many immunomodulatory agents that promote or inhibit the immunomodulatory role of T helper cells in RA to alleviate disease progression. These findings help to elucidate the aetiology and treatment of RA and point us toward the next steps. Cite this article: Bone Joint Res 2022;11(7):426–438.
Aim. To explore various immune cell-related causal pathways for primary sclerosing cholangitis (PSC). Methods. Immune cell-related pathway association study was conducted via integrative analysis of PSC GWAS summary and five immune cell-related eQTL datasets. The GWAS summary data of PSC was driven from 4,796 PSC cases and 19,955 healthy controls. The eQTL datasets of CD4+ T cells, CD8+ T cells, B cells, natural killer cells (NK), monocytes, and peripheral blood cells (PB) were collected from recently eQTL study. The PSC GWAS summary dataset was first aligned with eQTL datasets of six blood cells to obtain the GWAS summary data at overlapped eQTL loci, separately. For each type of cell, the obtained PSC GWAS summary dataset of eQTLs was subjected to pathway enrichment analysis. 853 biological pathways from Kyoto Encyclopedia of Genes and Genomes, BioCarta, and Reactome pathway databases were analyzed. Results. We identified 36 pathways for B cells, 33 pathways for CD4+ T cells, 28 pathways for CD8+ T cells, 33 pathways for monocytes (MN), 35 pathways for NK cells, and 33 for PB cells (all empirical P values < 5.0 × 10 − 5 ). Comparing the pathway analysis results detected 25 pathways shared by five immune cells, such as KEGG_CELL_ADHESION_MOLECULES_CAMS ( P value < 5.0 × 10 − 5 ) and REACTOME_MHC_CLASS_II_ANTIGEN_ PRESENTATION ( P value < 5.0 × 10 − 5 ). Several cell-specific pathways were also identified, including BIOCARTA_INFLAM_PATHWAY ( P value < 5 × 10 − 5 ) for B cell. Conclusion. Our study holds potential to identify novel candidate causal pathways and provides clues for revealing the complex genetic mechanism of PSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.