This work was supported by MOST of China National Basic Research Program (grant number: 2010CB94500 and 2012CB911200). The authors have no competing interests to declare.
SUMMARY Telomere length homeostasis is essential for genomic stability and unlimited self-renewal of embryonic stem cells (ESCs). We show that telomere-associated protein Rif1 is required to maintain telomere length homeostasis by negatively regulating Zscan4 expression, a critical factor for telomere elongation by recombination. Depletion of Rif1 results in terminal hyperrecombination, telomere length heterogeneity, and chromosomal fusions. Reduction of Zscan4 by shRNA significantly rescues telomere recombination defects of Rif1-depleted ESCs and associated embryonic lethality. Further, Rif1 negatively modulates Zscan4 expression by maintaining H3K9me3 levels at subtelomeric regions. Mechanistically, Rif1 interacts and stabilizes H3K9 methylation complex. Thus, Rif1 regulates telomere length homeostasis of ESCs by mediating heterochromatic silencing.
Rejuvenation of telomeres with various lengths has been found in induced pluripotent stem cells (iPSCs). Mechanisms of telomere length regulation during induction and proliferation of iPSCs remain elusive. We show that telomere dynamics are variable in mouse iPSCs during reprogramming and passage, and suggest that these differences likely result from multiple potential factors, including the telomerase machinery, telomerase-independent mechanisms and clonal influences including reexpression of exogenous reprogramming factors. Using a genetic model of telomerase-deficient (Terc −/− and Terc +/− ) cells for derivation and passages of iPSCs, we found that telomerase plays a critical role in reprogramming and self-renewal of iPSCs. Further, telomerase maintenance of telomeres is necessary for induction of true pluripotency while the alternative pathway of elongation and maintenance by recombination is also required, but not sufficient. Together, several aspects of telomere biology may account for the variable telomere dynamics in iPSCs. Notably, the mechanisms employed to maintain telomeres during iPSC reprogramming are very similar to those of embryonic stem cells. These findings may also relate to the cloning field where these mechanisms could be responsible for telomere heterogeneity after nuclear reprogramming by somatic cell nuclear transfer.
Infertility, miscarriage and aneuploid offspring increase with age in women, and meiotic dysfunction underlies reproductive aging. How aging disrupts meiotic function in women remains unclear, but as women increasingly delay having children, solving this problem becomes an urgent priority. Telomeres consist of a (TTAGGG)(n) repeated sequence and associated proteins at chromosome ends, mediate aging in mitotic cells and may also mediate aging during meiosis. Telomeres shorten both during DNA replication and from the response to oxidative DNA damage. Oocytes do not divide in adult mammals, but their precursors do replicate during fetal oogenesis; eggs ovulated from older females have traversed more mitotic cell cycles before entering meiosis during fetal oogenesis than eggs ovulated from younger females. Telomeres also would be expected to shorten from inefficient DNA repair of oxidative damage, because the interval between fetal oogenesis and ovulation is exceptionally prolonged in women. We have tested the hypothesis that telomere shortening disrupts meiosis by shortening telomeres experimentally in mice, which normally do not exhibit age-related meiotic dysfunction. Interestingly, mouse telomeres are much longer than human telomeres, but genetic or pharmacological shortening of mouse telomeres recapitulates in mice the human reproductive aging phenotype as the mouse telomeres reach the length of telomeres from older women. These observations led us to propose a telomere theory of reproductive aging. Moreover, chronological oxidative stress increases with reproductive aging, leading to DNA damage preferentially at (TTAGGG)(n) repeats. Finally, if telomeres shorten with aging, how do they reset across generations? Telomerase could not play a significant role in telomere elongation during early development, because this enzyme is not active until the blastocyst stage, well after the stage when telomere elongation takes place. Rather, telomeres lengthen during the early cell cycles of development by a novel mechanism involving recombination and sister chromatid exchange. Telomere dysfunction resulting from oxidative stress, a DNA damage response or aberrant telomere recombination may contribute to reproductive aging-associated meiotic defects, miscarriage and infertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.