The performance of pigeons on a color-reversal learning task was assessed after thalamic lesions disrupting the thalamofugal and tectofugal visual pathways. Successful performance of a simultaneous color discrimination was accomplished after surgery, and a series of reversals of the original discrimination followed during which the positive and negative consequences associated with the stimuli were interchanged. Shimizu and Hodos (1989) had reported that lesions of two laminae in the visual wulst (IHA and HD), both targets of the avian thalamofugal pathway, resulted in increased errors in a color-reversal learning task in pigeons. This finding suggested that the thalamofugal pathway might play a role in visual discrimination involving stimulus context changes. In the present study, lesions of the OPT complex (the thalamic source of afferents to IHA and HD) were found to have no effect on color-reversal learning performance. Instead, we found that damage to nucleus rotundus (the thalamic component of the tectofugal pathway) resulted in deficits that were far in excess of those that had been obtained after IHA and HD lesions. We suggest that the color-reversal learning deficits after Wulst lesions are not due to the Wulst's connections with the thalamofugal pathway, but rather to its connections with the tectofugal pathway.
Previous lesion studies of color-reversal learning in pigeons show that an impairment results when (1) the tectofugal visual pathway is damaged at either the thalamic level (nucleus rotundus) or the telencephalic level (ectostriatum), or (2) the thalamofugal visual pathway is damaged at the telencephalic level (the visual Wulst). An impairment does not result, however, when the thalamic source of thalamofugal input (n. opticus principalis thalami or OPT) to the visual Wulst is damaged. These results suggest that the visual Wulst plays a role in color-reversal learning as a consequence of visual information routed from the tectofugal pathway via other visual areas in the telencephalon. One such area is the hyperstriatum ventrale (HV). In the present study, after ablation of the medial and lateral regions of HV, pigeons were trained postoperatively to discriminate between two colors presented simultaneously. After reaching criterion, the pigeons were required to perform a series of discrimination reversals in which the positive and negative stimuli were interchanged. Lesions of medial HV resulted in impaired performance of a color-discrimination task (i.e. original learning), but did not affect discrimination reversal. An impairment in color-reversal learning resulted from combined damage to lateral HV and the fronto-thalamic tract (FT), which carries ascending visual input from OPT to the visual Wulst. No deficits were observed when either lateral HV or FT were damaged alone. These findings suggest that both the thalamofugal and tectofugal pathways provide the visual Wulst with visual input relevant to color-reversal learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.