A novel Ru thin film formation method was proposed to deposit metallic Ru thin films on TiN substrate for future backend of line process in semiconductor technologies. RuO2 thin films were first grown on TiN substrate by oxygen plasma-enhanced atomic layer deposition technique. The deposited RuO2 thin films were then reduced into metallic Ru thin films by H2/N2-assisted annealing.
The paper investigates the effects of cutting conditions on the machinability of stainless steel coatings manufactured onto AISI 1045 steel by laser cladding technology. Two kinds of CBN (cubic boron nitride) tools with different corner radius and two different depths of cut were adopted in the experiments. Cutting force during machining, surface roughness and microhardness of machined surface were measured and analyzed. The results show that both the cutting force and surface roughness increase with the increase of depth of cut. When the other cutting parameters are identical, the surface roughness decreases with the increase of tools corner radius while the variations of different cutting force components present different tendencies. The microhardness of the machined surface and its varied gradient in the direction of depth of cut increase with the increase of tools corner radius. The experiment results will provide valuable suggestions for optimization of cutting performance for laser cladding coatings in order to obtain excellent surface quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.