Global petroleum exploration is currently undergoing a strategic shift from conventional to unconventional hydrocarbon resources. Unconventional hydrocarbons in tight reservoirs show characteristics distinct from those of conventional hydrocarbon sources hosted in structural and stratigraphic traps. The characteristic features include the following: a hydrocarbon source and reservoir coexist; porosity and permeability are ultra-low; nano-pore throats are widely distributed; hydrocarbon-bearing reservoir bodies are continuously distributed; there is no obvious trap boundary; buoyancy and hydrodynamics have only a minor effect, and Darcy's law does not apply; phase separation is poor; there is no uniform oil-gas-water interface or pressure system; and oil or gas saturation varies. Examples of unconventional hydrocarbon accumulations are the Mesozoic tight sandstone oil province and the Upper Paleozoic tight sandstone gas province in the Ordos Basin, north-central China. Generally, continuous hydrocarbon accumulation over a large A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 2 area is a distinguishing characteristic of unconventional hydrocarbon sources.Because of the great potential of unconventional petroleum resources, it is believed that research on such resources will be at the forefront of the future development of petroleum geology.
This paper describes a new analytical method for determination of organophosphorus pesticides (OPs) along with their degradation products involving liquid chromatography (LC) positive ion electrospray (ESI+) tandem mass spectrometry (MS-MS) with selective reaction monitoring (SRM). Chromatography was performed on a Gemini C6-Phenyl (150 mmx2.0 mm, 3 microm) with a gradient elution using water-methanol with 0.1% formic acid, 2 mM ammonium acetate mobile phase at a flow rate of 0.2 mL min(-1). The LC separation and MS/MS operating conditions were optimized with a total analysis time less than 40 minutes. Method detection limits of 0.1-5 microg L(-1) for selected organophosphorus pesticides (OP), OP oxon degradation products, and other degradation products: 3,5,6-trichloro-2-pyridinol (TCP); 2-isopropyl-6-methyl-4-pyrimidol (IMP); and diethyl phosphate (DEP). Some OPs such as fenchlorphos are less sensitive (MDL 30 microg L(-1)). Calibration curves were linear with coefficients of correlation better than 0.995. A three-point identification approach was adopted with area from first selective reaction monitoring (SRM) transition used for quantitative analysis, while a second SRM transition along with the ratio of areas obtained from the first to second transition are used for confirmation with sample tolerance established by the relative standard deviation of the ratio obtained from standards. This new method permitted the first known detection of OP oxon degradation products including chlorpyrifos oxon at Bratt's Lake, SK and diazinon oxon and malathion oxon at Abbotsford, BC in atmospheric samples. Atmospheric detection limits typically ranged from 0.2-10 pg m(-3).
Cd, Pb, Cu and Zn were measured in vegetables in Xiguadi village around Lechang Pb/Zn mine in Guangdong province, South China. The daily intake (DI) of these metals from vegetables by local people was also determined. The respective Cd, Pb, Cu and Zn concentration was 0.05-0.90 (mean 0.25), 1.04-5.82 (2.64), 0.53-7.07 (2.00) and 3.87-25.20 (11.68) mg kg -1 , of which Cd concentration in all vegetables exceeded the safe limit given by FAO/WHO. The DI was found to be 49. 76, 475.56, 360.36 and 2,102.63 lg, respectively. The present results indicated local mining activity caused vegetable heavy metal contamination and Cd concentration exceeding the stipulated standards for all vegetables indicating potentially serious dietary risks for local people.
Manganese dioxides as active oxidants are the common minerals in environment, and different types of manganese dioxides may exhibit varied oxidative activity. In this study, eight manganese dioxides were used to conduct sulfadiazine (SD) oxidative degradation. SD can be oxidatively degraded and even mineralized by these manganese dioxides, and the toxicity of the SD sample can also be reduced significantly. The experiments in this study demonstrated that the kinetic reaction rate constant k values of SD degradation strongly depended on the physicochemical properties of different manganese dioxides, including average oxidation state (AOS), reductive potential (Eh), pH at the point of zero charge (pH PZC ), and apparent activation energy (E a ). The k values were positively correlated with the AOS and Eh, while negatively correlated with pH PZC and E a . The values of these physicochemical properties can be used to quantitatively estimate the oxidative activity of a manganese dioxide to some extent for better understanding of the degradation of organic pollutants with manganese dioxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.