Amyloid fibrillation of proteins is associated with a great variety of pathologic conditions. Development of new molecules that can monitor amyloidosis kinetics and inhibit fibril formation is of great diagnostic and therapeutic value. In this work, we have developed a biocompatible molecule that functions as an ex situ monitor and an in situ inhibitor for protein fibrillation, using insulin as a model protein. 1,2-Bis[4-(3-sulfonatopropoxyl)phenyl]-1,2-diphenylethene salt (BSPOTPE) is nonemissive when it is dissolved with native insulin in an incubation buffer but starts to fluoresce when it is mixed with preformed insulin fibril, enabling ex situ monitoring of amyloidogenesis kinetics and high-contrast fluorescence imaging of protein fibrils. Premixing BSPOTPE with insulin, on the other hand, inhibits the nucleation process and impedes the protofibril formation. Increasing the dose of BSPOTPE boosts its inhibitory potency. Theoretical modeling using molecular dynamics simulations and docking reveals that BSPOTPE is prone to binding to partially unfolded insulin through hydrophobic interaction of the phenyl rings of BSPOTPE with the exposed hydrophobic residues of insulin. Such binding is assumed to have stabilized the partially unfolded insulin and obstructed the formation of the critical oligomeric species in the protein fibrillogenesis process.
Pyrophosphate ion (PPi) release after nucleotide incorporation is a necessary step for RNA polymerase II (pol II) to enter the next nucleotide addition cycle during transcription elongation. However, the role of pol II residues in PPi release, and the mechanistic relationship between PPi release and the conformational change of the trigger loop remain unclear. In this study, we constructed a Markov State Model (MSM) from extensive all-atom Molecular Dynamics (MD) simulations in the explicit solvent to simulate the PPi release process along the pol II secondary channel. Our results show that the trigger loop has significantly larger intrinsic motion after catalysis and formation of PPi, which in turn, aids PPi release mainly through the hydrogen bonding between the trigger loop residue H1085 and (Mg-PPi)2− group. Once PPi leaves the active site, it adopts a hopping model through several highly conserved positively charged residues such as K752 and K619 to release from the pol II pore region of the secondary channel. These positive hopping sites form favorable interactions with PPi and generate four kinetically meta-stable states as identified by our MSM. Furthermore, our single mutant simulations suggest that H1085 and K752 aid PPi exit from the active site after catalysis, whereas K619 facilitates its passage through the secondary channel. Finally, we suggest that PPi release could help the opening motion of the trigger loop, even though PPi release precedes full opening of the trigger loop due to faster PPi dynamics. Our simulations provide predictions to guide future experimental tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.