Glucoamylase has a wide range of applications in the production of glucose, antibiotics, amino acids, and other fermentation industries. Fungal glucoamylase, in particular, has attracted much attention because of its wide application in different industries, among which Aspergillus niger is the popular strain producing glucoamylase. The low availability of NADPH was found to be one of the limiting factors for the overproduction of glucoamylase. In this study, three NADH kinases (AN03, AN14, AN17) and malic enzyme (maeA) were overexpressed in aconidial A. niger by CRISPR/Cas9 technology, significantly increasing the size of the NADPH pool, resulting in the activity of glucoamylase was improved by about 70%, 50%, 90%, and 70%, respectively; the total secreted protein was increased by about 25%, 22%, 52%, and 26%, respectively. Furthermore, the combination of the mitochondrial NADH kinase (AN17) and the malic enzyme (maeA) increased glucoamylase activity by a further 19%. This study provided an effective strategy for enhancing glucoamylase production of A. niger.
The complex morphological structure of Aspergillus niger influences its production of proteins, metabolites, etc., making the genetic manipulation and clonal purification of this species increasingly difficult, especially in aconidial Aspergillus niger. In this study, we found that N-acetyl-D-glucosamine (GlcNAc) could induce the formation of spore-like propagules in the aconidial Aspergillus niger SH2 strain. The spore-like propagules possessed life activities such as drug resistance, genetic transformation, and germination. Transcriptomic analysis indicated that the spore-like propagules were resting conidia entering dormancy and becoming more tolerant to environmental stresses. The Dac1 gene and the metabolic pathway of GlcNAc converted to glycolysis are related to the formation of the spore-like propagules, as evidenced by the CRISPRi system, qPCR, and semi-quantitative RT-PCR. Moreover, a method based on the CRISPR-Cas9 tool to rapidly recycle screening tags and recover genes was suitable for Aspergillus niger SH2. To sum up, this suggests that the spore-like propagules are resting conidia and the mechanism of their formation is the metabolic pathway of GlcNAc converted to glycolysis, particularly the Dac1 gene. This study can improve our understanding of the critical factors involved in mechanisms of phenotypic change and provides a good model for researching phenotypic change in filamentous fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.