We report the first large genome-wide association study (GWAS) in a Chinese population to identify susceptibility variants for psoriasis using a two-stage case-control design. In the first stage, we carried out a genome-wide association analysis in 1,139 cases and 1,132 controls of Chinese Han ancestry using Illumina Human 610-Quad BeadChips. In the second stage, we took top SNPs forward for replication in two independent samples of 5,182 cases and 6,516 controls of Chinese Han ancestry, and 539 cases and 824 controls of Chinese Uygur ancestry. In addition to the strong replication for two known susceptibility loci MHC (rs1265181, P = 1.93 x 10(-208), OR = 22.62) and IL12B (rs3213094, P(combined) = 2.58 x 10(-26), OR = 0.78), we identified a new susceptibility locus within the LCE gene cluster on 1q21 (rs4085613, P(combined) = 6.69 x 10(-30), OR = 0.76).
Infrared and Raman spectroscopy were used to characterize a chromate conversion coating (CCC) on 2024-T3 aluminum aircraft alloy with a long range objective of determining the anticorrosion mechanism of the CCC. Spectra were compared to those from synthetic mixed oxides of aluminum, Cr(III), and Cr(VI) made by treating pure reagents with NaOH. The Fourier transform infrared (FTIR) and Raman spectra of the CCC showed similar behavior to the chromium Ill/VI mixed oxide for both the initial materials and after heat-treatment. Analysis of the CCC and chromium mixed oxide by UV-vis spectroscopy indicated that both have a 3:1 ratio of Cr(III) to Cr(VI). When the chromium mixed oxide was immersed in pH 4 HNO3, the ratio of released H to released Cr(VI) ranged from 0.98 to 1.07. In addition, a compound with a Raman spectrum very similar to that of a CCC was formed by a reaction of Cr(III) hydroxide with Cr2O2, CrO2, or the Alodine chromating bath. The results indicate a strong structural similarity between the Cr-mixed oxide and a major component of the CCC. A likely structure for this common material involves covalent bonding between polymeric Cr(III) hydroxide and Cr202 or CrO . This mixed oxide structure may hydrolyze to release H and soluble chromate.
Activation of the ubiquitously expressed Na-H exchanger, NHE1, results in an increased efflux of intracellular HW. The increase in intracellular pH associated with this H+ efflux may contribute to regulating cell proliferation, differentiation, and neoplastic transformation. Although NHE1 activity is stimulated by growth factors and hormones acting through multiple GTPase-mediated pathways, little is known about how the exchanger is directly regulated. Using expression library screening, we identified a novel protein that specifically binds to NHE1 at a site that is critical for growth factor stimulation of exchange activity. This protein is homologous to calcineurin B and calmodulin and is designated CHP for calcineurin B homologous protein. Like NHE1, CHP is widely expressed in human tissues. Transient overexpression of CHP inhibits serum-and GTPase-stimulated NHEl activity. CHP is a phosphoprotein and expression of constitutively activated GTPases decreases CHP phosphorylation. The phosphorylation state of CHP may therefore be an important signal controlling mitogenic regulation of NHE1.
Various effects of chromate conversion coatings (CCCs) and chromate in solution on the corrosion of AA2024-T3 and pure Al are studied in this work. Raman spectroscopy was used to investigate the nature of chromate in CCCs through a comparison with the spectra of known standards and artificial Cr(III)/Cr(VI) mixed oxides. Chromate was shown to be released from CCCs and to migrate to and protect a nearby, uncoated area in the artificial scratch cell. However, experiments investigating the effect of chromate in solution on anodic dissolution kinetics under potentiostatic control indicated that large chromate concentrations were needed to have an effect.
Bone morphogenetic protein 2 (BMP2), a member of the transforming growth factor-β (TGF-β) super-family, is one of the main chondrogenic growth factors involved in cartilage regeneration. BMP2 is known to induce chondrogenic differentiation in various types of stem cells in vitro. However, BMP2 also induces osteogenic differentiation and endochondral ossification in mesenchymal stem cells (MSCs). Although information regarding BMP2-induced chondrogenic and osteogenic differentiation within the same system might be essential for cartilage tissue engineering, few studies concerning these issues have been conducted. In this study, BMP2 was identified as a regulator of chondrogenic differentiation, osteogenic differentiation and endochondral bone formation within the same system. BMP2 was used to regulate chondrogenic and osteogenic differentiation in stem cells within the same culture system in vitro and in vivo. Any changes in the differentiation markers were assessed. BMP2 was found to induce chondrogenesis and osteogenesis in vitro via the expression of Sox9, Runx2 and its downstream markers. According to the results of the subcutaneous stem cell implantation studies, BMP2 not only induced cartilage formation but also promoted endochondral ossification during ectopic bone/cartilage formation. In fetal limb cultures, BMP2 promoted chondrocyte hypertrophy and endochondral ossification. Our data reveal that BMP2 can spontaneously induce chondrogenic differentiation, osteogenic differentiation and endochondral bone formation within the same system. Thus, BMP2 can be used in cartilage tissue engineering to regulate cartilage formation but has to be properly regulated for cartilage tissue engineering in order to retain the cartilage phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.