Bioactive sphingosine 1-phosphate (S1P) and S1P receptors (S1PRs) have been implicated in many critical cellular events, including inflammation, cancer, and angiogenesis. However, the role of S1P/S1PR signaling in the pathogenesis of liver fibrosis has not been well documented. In this study, we found that S1P levels and S1P 3 receptor expression in liver tissue were markedly up-regulated in a mouse model of cholestasis-induced liver fibrosis. In addition, the S1P 3 receptor was also expressed in green fluorescent protein transgenic bone marrow (BM)-derived cells found in the damaged liver of transplanted chimeric mice that underwent bile duct ligation. Silencing of S1P 3 expression significantly inhibited S1P-induced BM cell migration in vitro. Furthermore, a selective S1P 3 receptor antagonist, suramin, markedly reduced the number of BM-derived cells during cholestasis. Interestingly, suramin administration clearly ameliorated bile duct ligation-induced hepatic fibrosis, as demonstrated by attenuated deposition of collagen type I and III, reduced smooth muscle ␣-actin expression, and decreased total hydroxyproline content. In conclusion, our data suggest that S1P/S1P 3 signaling plays an important role in cholestasis-induced liver fibrosis through mediating the homing of BM cells. Modulation of S1PR activity may therefore represent a new antifibrotic
Background6-mercaptopurine (6-MP) contributes substantially to remarkable improvement in the survival of childhood acute lymphoblastic leukemia (ALL) patients. However, 6-MP also has dose-limiting toxicities, particularly life-threatening myelosuppression, due to genetic polymorphisms in enzymes that metabolize 6-MP. Promising biomarkers for predicting 6-MP-induced leukopenia is still unclear in Chinese population. Here, we evaluated the associations of NUDT15, TPMT and ITPA genotypes with 6-MP intolerance in our cohort of childhood ALL patients.MethodsA total of 105 Chinese pediatric patients with a confirmed diagnosis of ALL were enrolled. We identified the NUDT15 coding variant rs116855232 (c.415C > T), a newly discovered 6-MP toxicity-related locus in Asians, and polymorphisms in TPMT rs1142345 and ITPA rs11273540. Associations between genotypes and 6-MP dose sensitivity, leukopenia, hepatotoxicity, and therapy interruption were evaluated.ResultsThe minor allele frequencies (MAFs) of NUDT15 rs116855232, TPMT rs1142345 and ITPA rs11273540 were 15.7, 2.9, and 18.1%, respectively. NUDT15 and TPMT genetic variants were strongly associated with 6-MP dose intensity. Patients with NUDT15 homogenous genotype (TT) were highly sensitive to 6-MP (dose intensity of 60.27%) compared to these with heterozygous genotype (TC) or wild type (CC), who tolerated an average dose intensity of 83.83 and 94.24%, respectively. The NUDT15 variant was a predictor for leukopenia (OR: 3.62, 95% CI 1.377–9.501, P = 0.009) and early-onset leukopenia (OR: 9.63, 95% CI 2.764–33.514, P = 3.75 × 10− 4). No differences were found between 6-MP dose intensity and ITPA polymorphisms.ConclusionNUDT15 variant is an optimal predictor for 6-MP intolerance in Chinese pediatric ALL patients and may have greatly clinical implications for individualized therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.