Small interfering RNAs (siRNAs) efficiently inhibit gene expression by RNA interference. Here, we report efficient inhibition, by both synthetic and vector-derived siRNAs, of hepatitis C virus (HCV) replication, as well as viral protein synthesis, using an HCV replicon system. The siRNAs were designed to target the 5′ untranslated region (5′ UTR) of the HCV genome, which has an internal ribosomal entry site for the translation of the entire viral polyprotein. Moreover, the 5′ UTR is the most conserved region in the HCV genome, making it an ideal target for siRNAs. Importantly, we have identified an effective site in the 5′ UTR at which ~80% suppression of HCV replication was achieved with concentrations of siRNA as low as 2.5 nM. Furthermore, DNAbased vectors expressing siRNA against HCV were also effective, which might allow the efficient delivery of RNAi into hepatocytes in vivo using viral vectors. Our results support the feasibility of using siRNA-based gene therapy to inhibit HCV replication, which may prove to be valuable in the treatment of hepatitis C.
Autophagy plays an important role in cellular responses to pathogens. However, the impact of the autophagy machinery on classical swine fever virus (CSFV) infection is not yet confirmed. In this study, we showed that CSFV infection significantly increases the number of autophagy-like vesicles in the cytoplasm of host cells at the ultrastructural level. We also found the formation of 2 ubiquitin-like conjugation systems upon virus infection, including LC3-I/LC3-II conversion and ATG12–ATG5 conjugation, which are considered important indicators of autophagy. Meanwhile, high expression of ATG5 and BECN1 was detected in CSFV-infected cells; conversely, degradation of SQSTM1 was observed by immunoblotting, suggesting that CSFV infection triggered a complete autophagic response, most likely by the NS5A protein. Furthermore, by confocal immunofluorescence analysis, we discovered that both envelope protein E2 and nonstructural protein NS5A colocalized with LC3 and CD63 during CSFV infection. Examination by immunoelectron microscopy further confirmed the colocalization of both E2 and NS5A proteins with autophagosome-like vesicles, indicating that CSFV utilizes the membranes of these vesicles for replication. Finally, we demonstrated that alteration of cellular autophagy by autophagy regulators and shRNAs affects progeny virus production. Collectively, these findings provide strong evidence that CSFV infection needs an autophagy pathway to enhance viral replication and maturity in host cells.
The peptide hormone ghrelin is the endogenous ligand for the type 1a growth hormone secretagogue receptor (GHS-R1a) and the only currently known circulating appetite stimulant. GHS-R1a antagonism has therefore been proposed as a potential approach for obesity treatment. More recently, ghrelin has been recognized to also play a role in controlling glucose-induced insulin secretion, which suggests another possible benefit for a GHS-R1a antagonist, namely, the role as an insulin secretagogue with potential value for diabetes treatment. In our laboratories, piperidine-substituted quinazolinone derivatives were identified as a new class of small-molecule GHS-R1a antagonists. Starting from an agonist with poor oral bioavailability, optimization led to potent, selective, and orally bioavailable antagonists. In vivo efficacy evaluation of selected compounds revealed suppression of food intake and body weight reduction as well as glucose-lowering effects mediated by glucose-dependent insulin secretion.
African swine fever (ASF) is a highly lethal contagious disease of swine caused by African swine fever virus (ASFV). At present, it is listed as a notifiable disease reported to the World Organization for Animal Health (OIE) and a class one animal disease ruled by Chinese government. ASF has brought significant economic losses to the pig industry since its outbreak in China in August 2018. In this review, we recapitulated the epidemic situation of ASF in China as of July 2020 and analyzed the influencing factors during its transmission. Since the situation facing the prevention, control, and eradication of ASF in China is not optimistic, safe and effective vaccines are urgently needed. In light of the continuous development of ASF vaccines in the world, the current scenarios and evolving trends of ASF vaccines are emphatically analyzed in the latter part of the review. The latest research outcomes showed that attempts on ASF gene-deleted vaccines and virus-vectored vaccines have proven to provide complete homologous protection with promising efficacy. Moreover, gaps and future research directions of ASF vaccine are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.