The double-proton-transfer reaction of the isolated guanine-cytosine (GC) base pair and four DNA trimers with different nucleobase sequences (dATGCAT, dGCGCGC, dTAGCTA, and dCGGCCG) are studied by quantum mechanical calculations using ONIOM(M06-2X/6-31G*:PM3). Proton-transfer patterns, energy and structural properties are analyzed to gain insight into the double-proton-transfer mechanism with consideration to environmental factors. In the gas phase, a stepwise mechanism is found for the dCGGCCG trimer, and a concerted mechanism is found in the other four models. The computational results demonstrate that electrostatic interaction of the peripheral and middle base pairs have a pronounced effect on double-proton-transfer pattern of GC base pairs. The structures with dATGCAT and dGCGCGC sequences facilitate H4a proton transfer and those with dTAGCTA and dCGGCCG sequence facilitate H1 proton transfer. The high proton affinity of cytosine at N3 facilitates H1 proton transfer. In aqueous solution, electrostatic interactions are reduced and the products of single-proton-transfer in the stepwise mechanism are stabilized. This results in a stepwise transfer pattern becoming favorable. Solvent effects favor the single-proton-transfer reaction more than gas phase conditions, but increase the reaction energy of double-proton-transfer.
The effects of the first hydration shell and the bulk solvation effects on the proton-transfer processes of guanine-cytosine (GC) and adenine-thymine (AT) base pairs are studied based on density functional theory, using the B3LYP method and DZP++ basis set. The proton-transfer mechanisms of the GC and AT base pairs in bulk solvation are first single-proton transfer (SPT1) and stepwise double-proton transfer (DPT). When only the first hydration shell surrounded by five water molecules (GC • 5H2O, AT • 5H2O), or both the first hydration shell and bulk solvation effects through polarizable continuum model (PCM) (GC•5H2O+PCM, AT•5H2O+PCM) are considered, only the first single-proton-transfer mechanism (SPT1) is found. The proton-transfer activation energies of the GC and the AT base pairs show that the majority of the hydration effects come from the first hydration shell through hydrogen-bond interactions, therefore the first hydration shell greatly influences the base pair structures and proton-transfer mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.