High-frequency activity (HFA) in intracranial electroencephalography recordings are diagnostic biomarkers for refractory epilepsy. Clinical utilities based on HFA have been extensively examined. HFA often exhibits different spatial patterns corresponding to specific states of neural activation, which will potentially improve epileptic tissue localization. However, research on quantitative measurement and separation of such patterns is still lacking. In this paper, spatial pattern clustering of HFA (SPC-HFA) is developed. The process is composed of three steps: (1) feature extraction: skewness which quantifies the intensity of HFA is extracted; (2) clustering: k-means clustering is applied to separate column vectors within the feature matrix into intrinsic spatial patterns; (3) localization: the determination of epileptic tissue is performed based on the cluster centroid with HFA expanding to the largest spatial extent. Experiments were conducted on a public iEEG dataset with 20 patients. Compared with existing localization methods, SPC-HFA demonstrates improvement (Cohen's d > 0.2) and ranks top in 10 out of 20 patients in terms of the area under the curve. In addition, after extending SPC-HFA to high-frequency oscillation detection algorithms, corresponding localization results also improve with effect size Cohen's d ≥ 0.48. Therefore, SPC-HFA can be utilized to guide clinical and surgical treatment of refractory epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.