Objective. To investigate the role and mechanism of protein kinase N2 (PKN2) in hydrogen peroxide (H2O2)-induced injury of PC12 cells. Methods. PC12 cells were transfected with lentivirus to knock down or overexpress PKN2 and then were treated with 300 μM H2O2 to establish a cell model of oxidative stress injury. The cell viability of PC12 cells in each group was determined by the CCK-8 method. Biochemical assays were used to measure reactive oxygen species (ROS), malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activity. Western blot was used to detect the protein expressions of PKN2, caspase-3, cleaved-caspase-3, PARP, cleaved-PARP, p-mTOR, and mTOR in PC12 cells in each group. Results. H2O2 treatment could significantly reduce PC12 cell viability and promote cell apoptosis and oxidative stress. PKN2 overexpression inhibited H2O2-induced apoptosis and oxidation damage by increasing PC12 cell viability, SOD activity, and p-mTOR protein expression, reducing intracellular ROS and MDA levels, and cleaved-caspase-3 and cleaved-PARP protein expression. Conclusion. PKN2 overexpression can alleviate H2O2-induced oxidative stress injury and apoptosis in PC12 cells by activating the mTOR pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.