Adding vertical ribs is recognized as a useful practice for reducing wind effects on cooling towers. However, ribs are rarely used on cooling towers in China since Chinese Codes are insufficient to support the design of rough-walled cooling towers, and an “understanding” hampers the use of ribs, which thinks that increased surface roughness has limited effects on the maximum internal forces that control the structural design. To this end, wind tunnel model tests in both uniform flow field with negligible free-stream turbulence and atmospheric boundary layer (ABL) turbulent flow field are carried out in this article to meticulously study and quantify the surface roughness effects on both static and dynamic wind loads for the purpose of improving Chinese Codes first. Subsequently, a further step is taken to obtain wind effects on a full-scale large cooling tower at a high Re, which are employed to validate the results obtained in the wind tunnel. Finally, the veracity of the model test results is discussed by investigating the Reynolds number (Re) effects on them. It has been proved that the model test results for atmospheric boundary layer flow field are all obtained in the range of Re-independence and the conclusions drawn from model tests and full-scale measurements basically agree, so most model test results presented in this article can be directly applied to the full-scale condition without corrections.
The wind tunnel model test and the field measurement are the two approaches for studying wind effects on structures. Due to the Reynolds number (Re) effects and the idealized treatment of the incoming flow characteristics, it is generally considered that the results based on the wind tunnel model tests are less reliable than those based on field measurements. Findings based on field measurements are valuable, but they are usually incomplete and difficult to obtain. One generally accepted solution is to perform full-scale measurements in combination with wind tunnel model tests, and it seems that the two techniques usually agree well with each other.Abstract: Mean/fluctuating wind pressure distributions on an actual large cooling tower (167-meter high) have been obtained and compared to previous results of other cooling towers. The agreement of mean wind pressure distributions is good. But the fluctuating wind pressure coefficients on the large cooling tower are much smaller than those on cooling towers of smaller sizes over the full range. It is assumed that the differences have resulted from the discrepancy of the turbulence intensity of the incoming flow, which is proven true according to wind tunnel model tests. Besides, it is found that most wind pressure signals produced by transducers around the throat section of the actual large cooling tower are of non-Gaussian distributions and they are not likely to be caused by the organized large-scale vortices according to the spatial correlation analyses. The upcoming flow of unsteady speed and direction in the engineering field might be an explanation for the phenomena. Two different methodologies (the traditional Davenport methodology and the complete probability methodology) are adopted to calculate the peak factors, in which the complete probability methodology is appropriate for non-Gaussian distributions. Studies about the spectral characteristics of wind-induced pressures on the actual large cooling tower are also included in this paper, and results show some differences from the previous study.
The high variability in turbulence is a significant feature of the realistic atmospheric boundary layer winds which might have strong effects on wind loads on structures submerged in atmospheric boundary layer. This article has been devoted to this matter of science which is of practical importance to wind-engineering design and research. First, the variation of the turbulence intensity of the atmospheric boundary layer flow has been studied using theoretical calculations and meteorological wind measurements. Second, the effects of free-stream turbulence on wind loads on circular cylindrical structures have been revealed at high Reynolds number and equivalent conditions based on field measurements and wind tunnel model tests for wind effects on a large cooling tower. Through these works, it is found that the turbulence intensity for the measured atmospheric boundary layer winds is highly variable due to the significant effect of the mean wind speed, which is not well represented by the traditional empirical formulae. Besides, the free-stream turbulence significantly influences the dynamic characteristics of wind effects on the cooling tower in most cases, and the wind effects for a flow field of high turbulence intensity are generally more unfavorable than those for a flow field of low turbulence intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.