The first acoustic diode (AD), which is composed by integrating a super lattice (SL) with a nonlinear medium (NLM), has recently been proposed to make a one-way street for the acoustic energy flux. This device prohibits the acoustic waves from one direction, but allows the transmission of the second harmonic wave (generated from the NLM) from the other direction. To improve its performance, it is crucial to transfer more acoustic energy from the stop-band of the acoustic filter (i.e., the SL) to its pass-band with the help of the NLM. In this work, a finite difference time domain model is developed to study the dynamic behaviors of the AD, in which a micro-bubble suspension takes the role of the NLM. Based on this model, the method of optimizing the nonlinearity-based AD is investigated by examining its performance with respect to several parameters, such as the periodicity number of the SL, the bubble size distribution, the bubble shell parameters, and the bubble concentration. It is also suggested that, instead of the rectification ratio, it might be more reasonable to characterize the performance of the AD with the energy attenuation coefficients (or transmission loss) for both incident directions.
This paper experimentally investigates the acoustic properties of an orifice with bias flow under medium and high sound level excitation. Orifices with two different edge configurations were tested. The study includes a wide range of bias flow velocities, various acoustic excitation levels and different frequencies. The nonlinear acoustic scattering matrix was identified by a finely controled two-source method. Aeroacoustic modal analysis was introduced based on eigenvaluedecomposition. Acoustic properties, such as impedance, nonlinear scattering matrix and the eigenvalues were compared and discussed. Experimental results also show that bias flow makes the acoustic properties more complex compared to the no bias flow case, especially when the velocity ratio between acoustic particle velocity and mean flow velocity is near unity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.