Inertial measurement units (IMUs) are commonly used for localization or movement tracking in pervasive healthcare-related studies, and gait analysis is one of the most often studied topics using IMUs. The increasing variety of commercially available IMU devices offers convenience by combining the sensor modalities and simplifies the data collection procedures. However, selecting the most suitable IMU device for a certain use case is increasingly challenging. In this study, guidelines for IMU selection are proposed. In particular, seven IMUs were compared in terms of their specifications, data collection procedures, and raw data quality. Data collected from the IMUs were then analyzed by a gait analysis algorithm. The difference in accuracy of the calculated gait parameters between the IMUs could be used to retrace the issues in raw data, such as acceleration range or sensor calibration. Based on our algorithm, we were able to identify the best-suited IMUs for our needs. This study provides an overview of how to select the IMUs based on the area of study with concrete examples, and gives insights into the features of seven commercial IMUs using real data.
Gait is an essential function for humans, and gait patterns in daily life provide meaningful information about a person's cognitive and physical health conditions. Inertial measurement units (IMUs) have emerged as a promising tool for low-cost, unobtrusive gait analysis. However, large varieties of IMU gait analysis algorithms and the lack of consensus for their validation make it difficult for researchers to assess the reliability of the algorithms for specific use cases. In daily life, individuals adapt their gait patterns in response to changes in the environment, making it necessary for IMU gait analysis algorithms to provide accurate measurements despite these gait variations. In this paper, we reviewed common types of IMU gait analysis algorithms and appropriate analysis methods to evaluate the accuracy of gait parameters extracted from IMU measurements. We then evaluated stride lengths and stride times calculated from a comprehensive double integration based IMU gait analysis algorithm using an optoelectric walkway as gold standard. In total, 729 strides from five healthy subjects and three different walking patterns were analyzed. Correlation analyses and Bland-Altman plots showed that this method is accurate and robust against large variations in walking patterns (stride length: correlation coefficient (r) was 0.99, root mean square error (RMSE) was 3% and average limits of agreement (LoA) was 6%; stride time: r was 0.95, RMSE was 4% and average LoA was 7%), making it suitable for gait evaluation in daily life situations. Due to the small sample size, our preliminary findings should be verified in future studies.
Inertial measurement units (IMUs) enable easy to operate and low-cost data recording for gait analysis. When combined with treadmill walking, a large number of steps can be collected in a controlled environment without the need of a dedicated gait analysis laboratory. In order to evaluate existing and novel IMU-based gait analysis algorithms for treadmill walking, a reference dataset that includes IMU data as well as reliable ground truth measurements for multiple participants and walking speeds is needed. This article provides a reference dataset consisting of 15 healthy young adults who walked on a treadmill at three different speeds. Data were acquired using seven IMUs placed on the lower body, two different reference systems (Zebris FDMT-HQ and OptoGait), and two RGB cameras. Additionally, in order to validate an existing IMU-based gait analysis algorithm using the dataset, an adaptable modular data analysis pipeline was built. Our results show agreement between the pressure-sensitive Zebris and the photoelectric OptoGait system (r = 0.99), demonstrating the quality of our reference data. As a use case, the performance of an algorithm originally designed for overground walking was tested on treadmill data using the data pipeline. The accuracy of stride length and stride time estimations was comparable to that reported in other studies with overground data, indicating that the algorithm is equally applicable to treadmill data. The Python source code of the data pipeline is publicly available, and the dataset will be provided by the authors upon request, enabling future evaluations of IMU gait analysis algorithms without the need of recording new data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.