The Poyang Lake wetland in China is the largest wintering destination for Siberian cranes worldwide. Understanding the spatiotemporal characteristics of crane habitats is of great importance for ecological environment governance and biodiversity protection. The shallow water, grassland, and soft mudflat regions of the Poyang Lake wetland are ideal habitats for wintering Siberian cranes. Based on Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) remote sensing images, habitat areas were extracted and associated with various water levels taken on multiple dates. Landscape metrics were applied to describe the spatial structural characteristics of the crane habitats, and spatial statistics are used to explore the cold and hot spots of their distribution. Moreover, three indicators including sustainability, stability, and variety were applied to evaluate the vulnerability of the crane habitats under different hydrological conditions. Our findings indicate: (a) The main crane habitats exhibit a gradual decreasing degree of fragmentation in time, an obvious uncertainty of shape complexity and a relatively stable connectivity. (b) The crane habitats have a consistent spatial pattern of highly aggregated distributions associated with various water levels. (c) The hot spots of the habitats formed multiple “sheet” belts centered on the “Lake Enclosed in Autumn” regions, while the cold spots indicate a spatial pattern of axial distributions. (d) The majority of the hot spots of the habitats were distributed in sub-lakes found in the southeast part of the Poyang Lake watershed and the Nanjishan and Wucheng nature reserves, while the cold spots were mainly distributed in the main channels of the basins of Poyang Lake. (e) The sustainable habitats were mainly distributed in the “Lake Enclosed in Autumn” regions and intensively aggregated in two national nature reserves. (f) Under conditions of extremely low to average water levels (5.3–11.46 m), an increase of water level causes a decrease of the stability and variety of the crane habitats and weakens the aggregation structure.
The hydrological situations of wetlands are critical to the habitat qualities of wintering migratory birds. It is of great value to evaluate the habitat vulnerabilities within more precise intervals of water levels and quantitatively assess the influences of water level changes. The findings are advantageous for managing wetland ecosystems and for migratory bird habitat protection. This study identified the ideal habitats for wintering Siberian cranes in Poyang Lake wetland within 1-meter water level intervals (from 5 to 16 m) based on the Landsat thematic mapper (TM), enhanced thematic mapper plus (ETM+), and operational land imager (OLI) remote sensing images taken on multiple dates in the past 30 years. Three indicators—sustainability, stability, and variety—were used to evaluate the vulnerabilities of crane habitats within various water level intervals; the spatial variations and distribution patterns of the habitat vulnerabilities were further explored. The explanatory powers of water level intervals (and others) and their paired interactive effects on the habitat vulnerabilities were quantified using the geographical detector method. The results showed that crane habitat vulnerabilities were significantly sensitive to the water level changes of Poyang Lake; the habitat vulnerabilities and their spatial distribution patterns both exhibited specific tendencies with water level increases. A water level of 12 m was identified as the potential upper threshold for the maintenance of sustainable crane habitats and a water level interval of 9–10 m was expected to be the optimal interval for facilitating the aggregation features of crane habitats. The water level interval was identified as the most dominant factor in habitat vulnerability. It explained 14.46%, 42.89%, and 21.78% of the sustainability, stability, and variety of crane habitats; the numbers were expected to increase to 22%, 49.25%, and 25.84%, respectively, with water level intervals interacting with other factors. This article provides a novel perspective in evaluating the habitat vulnerabilities of wintering migratory birds and quantifying the responses to water level changes in wetlands; the proposed approaches are applicable and practicable for habitat vulnerability assessments of other wintering birds in other typical wetlands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.