The baroclinic and barotropic components of atmospheric dynamics are usually viewed as interlinked through the baroclinic life cycle, with baroclinic growth of eddies connected to heat fluxes, barotropic decay connected to momentum fluxes, and the two eddy fluxes connected through the Eliassen–Palm wave activity. However, recent observational studies have suggested that these two components of the dynamics are largely decoupled in their variability, with variations in the zonal mean flow associated mainly with the momentum fluxes, variations in the baroclinic wave activity associated mainly with the heat fluxes, and essentially no correlation between the two. These relationships are examined in a dry dynamical core model under different configurations and in Southern Hemisphere observations, considering different frequency bands to account for the different time scales of atmospheric variability. It is shown that at intermediate periods longer than 10 days, the decoupling of the baroclinic and barotropic modes of variability can indeed occur as the eddy kinetic energy at those time scales is only affected by the heat fluxes and not the momentum fluxes. The baroclinic variability includes the oscillator model with periods of 20–30 days. At both the synoptic time scale and the quasi-steady limit, the baroclinic and barotropic modes of variability are linked, consistent with baroclinic life cycles and the positive baroclinic feedback mechanism, respectively. In the quasi-steady limit, the pulsating modes of variability and their correlations depend sensitively on the model climatology.
Northern Hemisphere (NH) climate has experienced various coherent wintertime multidecadal climate trends in stratosphere, troposphere, ocean, and cryosphere. However, the overall mechanistic framework linking these trends is not well established. Here we show, using long-term transient forced coupled climate simulation, that large parts of the coherent NH-multidecadal changes can be understood within a damped coupled stratosphere/troposphere/ocean-oscillation framework. Wave-induced downward propagating positive stratosphere/troposphere-coupled Northern Annular Mode (NAM) and associated stratospheric cooling initiate delayed thermohaline strengthening of Atlantic overturning circulation and extratropical Atlantic-gyres. These increase the poleward oceanic heat transport leading to Arctic sea-ice melting, Arctic warming amplification, and large-scale Atlantic warming, which in turn initiates wave-induced downward propagating negative NAM and stratospheric warming and therefore reverse the oscillation phase. This coupled variability improves the performance of statistical models, which project further weakening of North Atlantic Oscillation, North Atlantic cooling and hiatus in wintertime North Atlantic-Arctic sea-ice and global surface temperature just like the 1950s–1970s.
Abstract. Atmospheric planetary waves play a fundamental role in driving stratospheric dynamics, including sudden stratospheric warming (SSW) events. It is well established that the bulk of the planetary wave activity originates near the surface. However, recent studies have pointed to a planetary wave source near the tropopause that may play an important role in the development of SSWs. Here we analyze the dynamical origin of this wave source and its impact on stratosphere–troposphere coupling, using an idealized model and a quasi-reanalysis. It is shown that the tropopause-level planetary wave source is associated with nonlinear wave–wave interactions, but it can also manifest as an apparent wave source due to transient wave decay. The resulting planetary waves may then propagate deep into the stratosphere, where they dissipate and may help to force SSWs. Our results indicate that SSWs preceded by both the tropopause and the surface wave-source events tend to be followed by a weakened tropospheric zonal flow several weeks later. However, while in the case of a preceding surface wave-source event this downward impact is found mainly poleward of 60∘ N, it appears to be the strongest between 40 and 60∘ N for SSWs preceded by tropopause wave-source events. This suggests that tropopause wave-source events could potentially serve as an additional predictor of not only SSWs but also their downward impact as well.
Multiscale asymptotic methods are used to derive wave activity equations for planetary- and synoptic-scale eddies and their interactions with a zonal mean flow. The eddies are assumed to be of small amplitude, and the synoptic-scale zonal and meridional length scales are taken to be equal. Under these assumptions, the zonal-mean and planetary-scale dynamics are planetary geostrophic (i.e., dominated by vortex stretching), and the interaction between planetary- and synoptic-scale eddies occurs only through the zonal mean flow or through diabatic processes. Planetary-scale heat fluxes are shown to enter the angular momentum budget through meridional mass redistribution. After averaging over synoptic length and time scales, momentum fluxes disappear from the synoptic-scale wave activity equation while synoptic-scale heat fluxes disappear from the baroclinicity equation, leaving planetary-scale heat fluxes as the only adiabatic term coupling the baroclinic and barotropic components of the zonal mean flow. In the special case of weak planetary waves, the decoupling between the baroclinic and barotropic parts of the flow is complete with momentum fluxes driving the barotropic zonal mean flow, heat fluxes driving the wave activity, and diabatic processes driving baroclinicity. These results help explain the apparent decoupling between the baroclinic and barotropic components of flow variability recently identified in observations and may provide a means of better understanding the link between thermodynamic and dynamic aspects of climate variability and change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.