The optimization of degradation processes and the management of leachate and biogas produced in landfills are key aspects for the establishment of more sustainable municipal solid waste (MSW) disposal in developing countries. In this study, biochemical methane potential (BMP) tests were used to evaluate CH 4 production potential and degradation kinetics of fresh waste (FW) and five-year aged excavated waste (EW) samples from a tropical controlled landfill with compositional characteristics of developing countries. BMP tests with reconstituted samples of the biodegradable fraction of both MSW types were performed at three substrate/inoculum (S/I) ratios (0.3, 0.5 and 1.0 g VS substrate g − 1 VS inoculum), and CH 4 generation parameters were determined using the first-order and modified Gompertz kinetic models. After 30-d, the best BMP results were reached at S/I ratios of 0.5 and 1.0, with cumulative CH 4 productions of 528 and 433 mL CH 4 g − 1 VS for FW, respectively; and 151 and 135 mL CH 4 g − 1 VS for EW, respectively. The first-order kinetic model provided a good fit to BMP results for FW, whereas the modified Gompertz model showed a better adjustment to the BMP data for EW. Calculated first-order CH 4 generation rates for FW and EW were in the range 0.19-0.36 and 0.23-0.25 d − 1 , respectively. These results evidence the high biodegradability and CH 4 potential of FW disposed of in a tropical landfill in Colombia and the reduced BMP of EW despite a relatively short period after disposal under conventional landfill operation conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.