In this study, ¹H NMR-based metabonomics has been applied, for the first time to our knowledge, to investigate lung cancer metabolic signatures in urine, aiming at assessing the diagnostic potential of this approach and gaining novel insights into lung cancer metabolism and systemic effects. Urine samples from lung cancer patients (n = 71) and a control healthy group (n = 54) were analyzed by high resolution ¹H NMR (500 MHz), and their spectral profiles subjected to multivariate statistics, namely, Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Orthogonal Projections to Latent Structures (OPLS)-DA. Very good discrimination between cancer and control groups was achieved by multivariate modeling of urinary profiles. By Monte Carlo Cross Validation, the classification model showed 93% sensitivity, 94% specificity and an overall classification rate of 93.5%. The possible confounding influence of other factors, namely, gender and age, have also been modeled and found to have much lower predictive power than the presence of the disease. Moreover, smoking habits were found not to have a dominating influence over class discrimination. The main metabolites contributing to this discrimination, as highlighted by multivariate analysis and confirmed by spectral integration, were hippurate and trigonelline (reduced in patients), and β-hydroxyisovalerate, α-hydroxyisobutyrate, N-acetylglutamine, and creatinine (elevated in patients relatively to controls). These results show the valuable potential of NMR-based metabonomics for finding putative biomarkers of lung cancer in urine, collected in a minimally invasive way, which may have important diagnostic impact, provided that these metabolites are found to be specifically disease-related.
Lung cancer diagnosis is a challenge since it is also one of the most frequently diagnosed cancers. Diagnostic challenges are deeply related to the development of personalized therapy and molecular and precise histological characterizations of lung cancer. When addressing these features, it is very important to acknowledge the issue of tumour heterogeneity, as it imposes several questions. First of all, lung cancer is a very heterogeneous disease, at a cellular and histological level. Cellular and histological heterogeneity are addressed with emphasis on the diagnosis, pre-neoplastic lesions, and cell origin, trying to contribute to a better knowledge of carcinogenesis. Molecular intra-tumour and inter-tumour heterogeneity are also addressed as temporal heterogeneity. Lung cancer heterogeneity has implications in pathogenesis understanding, diagnosis, selection of tissue for molecular diagnosis, as well as therapeutic decision. The understanding of tumour heterogeneity is crucial and we must be aware of the implications and future developments regarding this field.
This work aims at characterizing the metabolic profile of human lung cancer, to gain new insights into tumor metabolism and to identify possible biomarkers with potential diagnostic value in the future. Paired samples of tumor and noninvolved adjacent tissues from 12 lung tumors have been directly analyzed by (1)H HRMAS NMR (500/600 MHz) enabling, for the first time to our knowledge, the identification of over 50 compounds. The effect of temperature on tissue stability during acquisition time has also been investigated, demonstrating that analysis should be performed within less than two hours at low temperature (277 K), to minimize glycerophosphocholine (GPC) and phosphocholine (PC) conversion to choline and reduce variations in some amino acids. The application of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) to the standard 1D (1)H spectra resulted in good separation between tumor and control samples, showing that inherently different metabolic signatures characterize the two tissue types. On the basis of spectral integration measurements, lactate, PC, and GPC were found to be elevated in tumors, while glucose, myo-inositol, inosine/adenosine, and acetate were reduced. These results show the valuable potential of HRMAS NMR-metabonomics for investigating the metabolic phenotype of lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.