Background/Aims. Jiawei Fengshining (JWFSN) is a new formula originated from Fengshining, a classic formula for the treatment of rheumatoid arthritis (RA). The mechanism of JWFSN in the treatment of RA is still unclear. The aim of this study was to evaluate the effect of JWFSN formula on the inflammatory mediator levels in the serum and the TGF-β1/Smad pathway in the synovium and to explore the underlying mechanisms of JWFSN formula to ameliorate synovial hyperplasia and apoptosis inhibition of synovium in rats with RA. Method. SPF female Wistar rats were randomly divided into 6 groups: the blank control group, the model control group, the positive drug group, and the low-, medium-, and high- dose JWFSN groups, with 8 rats in each group. Enzyme-linked immunosorbent assay (ELISA) was used to detect inflammatory mediators, anti-inflammatory mediators, and rheumatoid factor (RF). The pathological condition and apoptosis of the synovial tissue were detected by hematoxylin and eosin (HE) and TUNEL staining, respectively. TGF-β1, p-Smad2, p-Smad3, and Smad7 protein expressions in synovial tissue were measured by western blot assay. In addition, human rheumatoid arthritis fibroblast-like synoviocytes cell line MH7A was treated with 20% JWFSN-containing serum to obtain in vitro data. Result. The administration of JWFSN was found to ameliorate synovial hyperplasia and promote apoptosis; increase the serum contents of anti-inflammatory mediators; reduce inflammatory mediators and RF contents; and inhibit the TGF-β1/Smad signaling pathway in CIA rats. In vitro JWFSN treatment increased the apoptosis of MH7A cells and decreased cell viability. Additionally, JWFSN treatment inhibited the TGF-β1/Smad signaling pathway in MH7A cells. Interestingly, kartogenin (TGF-β1/Smad pathway activator) treament reversed the effects of JWFSN treatment. Conclusion. JWFSN may ameliorate inflammatory factors’ abnormality, synovial hyperplasia, and apoptosis inhibition of synovium via the TGF-β1/Smad signaling pathway.
BackgroundTumor explant models provide a powerful ex vivo tool to evaluate complex biological mechanisms in a controlled environment. Ex vivo models retain much of the original tumor biology, heterogeneity, and tumor microenvironment, and therefore provide a useful preclinical platform and functional approach to assess drug responses rapidly and directly.MethodsTo explore mechanisms of resistance to cancer immunotherapy, we established an organotypic tissue slice Air-Liquid Interface (ALI) ex vivo system utilizing surgical tumor specimens from patients to assess the impact of the clinically utilized anti-PD-1 antibody nivolumab (OPDIVO). In the present study, we built a real-world patient cohort comprised of six tumor types: non-small cell lung cancer, melanoma, pancreatic ductal adenocarcinoma, breast cancer, prostate cancer, and colorectal cancer. We assessed tissue morphology, histology, PD-L1 IHC (CPS and TPS), CD8 T cell topology, proliferation in the tumor and stromal compartments, and secretome profiling.ResultsOur tumor slice model highly recapitulated features of the original tumor, including tumor architecture, immune phenotypes, and the prognostic markers. To identify responses to aPD-1 treatment, we compared baseline values for the cultured tumor slices with values at different timepoints post treatment. Secretome profiling of tissue explant supernatants using a panel of 94 analytes, revealed alterations to cytokines produced in the tumor microenvironment in response to aPD-1 treatment. We found that soluble expression patterns were associated with T-cell patterns (inflamed, excluded and desert) and PD-L1 score (CPS and TPS) in tumor tissues. These cytokines mediate critical functions across the immune cell cycle. Ongoing efforts to characterize T cell activation, exhaustion, tumor intrinsic responses and microenvironment composition using Imaging Mass Cytometry will be presented.ConclusionsIn this study, we demonstrated the feasibility of using fresh, surgically resected human tumors to test aPD-1 responses in an ex vivo system. Further, this model system has the potential to drive discovery and translational efforts by evaluating mechanisms of resistance to cancer immunotherapy and evaluate new single agent or combination therapies in the ex vivo setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.