The microsecond Er:YAG pulsed laser with a wavelength of λ = 2.94 μm has been widely used in the medical field, particularly for ablating dental tissues. Since bone and dental tissues have similar compositions, consisting of mineralized and rigid structures, the Er:YAG laser represents a promising tool for laserosteotomy applications. In this study, we explored the use of the Er:YAG laser for deep bone ablation, in an attempt to optimize its performance and identify its limitations. Tissue irrigation and the laser settings were optimized independently. We propose an automated irrigation feedback system capable of recognizing the temperature of the tissue and delivering water accordingly. The irrigation system used consists of a thin 50 μm diameter water jet. The water jet was able to penetrate deep into the crater during ablation, with a laminar flow length of 15 cm, ensuring the irrigation of deeper layers unreachable by conventional spray systems. Once the irrigation was optimized, ablation was considered independently of the irrigation water. In this way, we could better understand and adjust the laser parameters to suit our needs. We obtained line cuts as deep as 21 mm without causing any visible thermal damage to the surrounding tissue. The automated experimental setup proposed here has the potential to support deeper and faster ablation in laserosteotomy applications.
A novel real-time and non-destructive method for differentiating soft from hard tissue in laser osteotomy has been introduced and tested in a closed-loop fashion. Two laser beams were combined: a low energy frequency-doubled nanosecond Nd:YAG for detecting the type of tissue, and a high energy microsecond Er:YAG for ablating bone. The working principle is based on adjusting the energy of the Nd:YAG laser until it is low enough to create a microplasma in the hard tissue only (different energies are required to create plasma in different tissue types). Analyzing the light emitted from the generated microplasma enables real-time feedback to a shutter that prevents the Er:YAG laser from ablating the soft tissue.
No abstract
Conventional bone surgery leads to unwanted damage to the surrounding tissues and a slow healing process for the patients. Additionally, physicians are not able to perform free cutting shapes due to the limitations of available systems. These issues can be overcome by robot-assisted contactless laser surgery since it provides less mechanical stress, allows precise functional cuts, and leads to faster healing. The remaining drawback of laser surgery is the low ablation rate that is not yet competitive with conventional mechanical piezo-osteotomes. Therefore, we aim at maximizing the efficiency in hard tissue laser ablation by optimizing the lateral movement speed for different irrigation conditions. The results of this study show a non-linear relationship between cutting rates, speeds, and depths that should be critically considered for integration in robotic laser surgery.
. Significance: The highest absorption peaks of the main components of bone are in the mid-infrared region, making Er:YAG and lasers the most efficient lasers for cutting bone. Yet, studies of deep bone ablation in minimally invasive settings are very limited, as finding suitable materials for coupling high-power laser light with low attenuation beyond is not trivial. Aim: The first aim of this study was to compare the performance of different optical fibers in terms of transmitting Er:YAG laser light with a wavelength at high pulse energy close to 1 J. The second aim was to achieve deep bone ablation using the best-performing fiber, as determined by our experiments. Approach: In our study, various optical fibers with low attenuation ( ) were used to couple the Er:YAG laser. The fibers were made of germanium oxide, sapphire, zirconium fluoride, and hollow-core silica, respectively. We compared the fibers in terms of transmission efficiency, resistance to high Er:YAG laser energy, and bending flexibility. The best-performing fiber was used to achieve deep bone ablation in a minimally invasive setting. To do this, we adapted the optimal settings for free-space deep bone ablation with an Er:YAG laser found in a previous study. Results: Three of the fibers endured energy per pulse as high as 820 mJ at a repetition rate of 10 Hz. The best-performing fiber, made of germanium oxide, provided higher transmission efficiency and greater bending flexibility than the other fibers. With an output energy of 370 mJ per pulse at 10 Hz repetition rate, we reached a cutting depth of in sheep bone. Histology image analysis was performed on the bone tissue adjacent to the laser ablation crater; the images did not show any structural damage. Conclusions: The findings suggest that our prototype could be used in future generations of endoscopic devices for minimally invasive laserosteotomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.