Bean golden yellow mosaic virus (BGYMV) is a whitefly-transmitted geminivirus of the Begomovirus family that causes important yield losses to common beans grown in tropical and sub-tropical countries of Latin America and the Caribbean. A major resistance gene that has been widely deployed in this region is the recessive locus bgm-1 that prevents the development of severe yellowing typical of the disease. In this study, we developed a co-dominant sequence-characterized amplified region (SCAR) marker, SR2, based on a previously identified random amplified polymorphic DNA (RAPD) marker that is tightly linked to the bgm-1 resistance gene and identified the position of the locus in the common bean genome through comparative mapping using two genetic maps for the species. The SR2 marker was mapped relative to bgm-1 in a segregating population of recombinant inbred lines developed from the resistant x susceptible cross of DOR476 x SEL1309. Polymorphism was shown to be based on a 37 bp insertion event in the SR2 allele associated with susceptibility compared to the allele associated with resistance and the marker mapped at a distance of 7.8 cM from the resistance gene. The SR2 marker was significantly associated with overall disease symptoms and with three of the four symptoms associated with the disease (yellowing or chlorosis, flower abortion, foliar deformation) in a greenhouse trial in Colombia with the mechanically transmissible BGYMV-Guatemala strain. In both the DOR364 x G19833 and BAT93 x Jalo EEP558 mapping populations, SR2 was located near the end of linkage group b03 (chromosome 5) suggesting a sub-telomeric position. The position of the bgm-1 resistance gene was estimated to be close to that of bc-1, a strain-specific resistance gene for Bean common mosaic virus (BCMV), based on linkage of SR2 with the SCAR marker SBD5 in the DOR364 x G19833 mapping population. The implications of linkage between these two recessive resistance genes are discussed, as this is the first association between resistance genes against both a begomovirus and a potyvirus.
Single nucleotide polymorphisms (SNPs) are the most common sequence difference found in plant genomes, yet they have not been widely exploited for producing molecular markers in common bean (Phaseolus vulgaris L.). The objective of this study was to develop a SNP assay based on a type of heteroduplex mismatch cleavage called EcoTILLING for molecular marker development in this important legume, and apply the assay (i) to the conversion of a sequence‐characterized amplified region (SCAR) marker useful for selecting virus resistance (SR2) and (ii) to the screening of SNP polymorphisms in newly developed expressed sequence tag (EST)–based markers. The SNP assay involved heteroduplex mismatch cleavage by a single‐strand specific nuclease ‘CEL I’ which was used to uncover two SNPs in the SR2 fragment and 22 SNPs in 37 candidate ESTs, some of which were used in segregation analysis. While developing the SNP techniques we tested several platforms, including LI‐COR, nondenaturing polyacrylamide, and agarose gel detection. The agarose gel system was used for SNP genetic mapping in two common bean mapping populations, showing that heteroduplex cleavage is a useful technique for increasing molecular marker number for the crop. Examples are given of mapped SNP markers for the phytic acid pathway gene for myo‐inositol‐1‐phosphate synthase and a drought tolerance–related gene, S‐adenosylmethionine decarboxylase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.