Behavior depends on coordinated activity across multiple brain regions. Within such networks, highly connected hub regions are assumed to disproportionately influence behavioral output, although this hypothesis has not been systematically evaluated. Previously, by mapping brain-wide expression of the activity-regulated gene c-fos, we identified a network of brain regions co-activated by fear memory. To test the hypothesis that hub regions are more important for network function, here, we simulated node deletion in silico in this behaviorally defined functional network. Removal of high degree nodes produced the greatest network disruption (e.g., reduction in global efficiency). To test these predictions in vivo, we examined the impact of post-training chemogenetic silencing of different network nodes on fear memory consolidation. In a series of independent experiments encompassing 25% of network nodes (i.e., 21/84 brain regions), we found that node degree accurately predicted observed deficits in memory consolidation, with silencing of highly connected hubs producing the largest impairments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.