The problem of excess cerebrospinal fluid in the brain (hydrocephalus) is generally managed using a passive pressure or flow regulated mechanical shunt. Despite the success of such devices, they have been plagued with a number of problems. It is desirable to have a shunt valve that responds dynamically to the changing needs of the patient, opening and closing according to a dynamic physiological pattern, rather than simply to the hydrostatic pressure across the valve. Such a valve would by necessity be mechatronic, electronically controlled by software. In this article, different methods for controlling such a mechatronic valve are explored, and the effect of current hydrocephalus management techniques on the intracranial hydrodynamics of acute hydrocephalus patient compared with those based on a mechatronic valve was investigated using numerical simulation. Furthermore, the performance of these techniques was evaluated based on a proposed multi-dimensional figure of merit. In addition, an empirical valve schedule was proposed based on different criterions. An intelligent shunting system is seen as the future in hydrocephalus management and treatment, and towards this end, suitably programmed mechatronic valves would attempt to mimic normal physiology and potentially overcome many of the problems associated with current mechanical valves.
Hydrocephalus is a neurological disease that manifests itself in an elevated fluid pressure within the brain, and if left untreated, may be fatal. It is currently treated using shunt implants, which consist of a mechanical valve and tubes that regulate the pressure of cerebrospinal fluid (CSF) by draining excess fluid into the abdomen. Hydrocephalus shunting systems are no longer expected simply to regulate the intracranial pressure (ICP), but also to offer the option of regaining independence of the shunt. Additionally, they could offer personalised valve management which is one of the main limitations of current shunts. This paper describes the design of a multi-agent system for an intelligent and personalised CSF management system. Patient feedback and intracranial pressure readings will play important roles in the process of CSF regulation and weaning, introduces an element of personalisation to the treatment. The new shunting system would deliver both reactive and goal-driven solutions for the treatment, at the same time the intelligent part of the system will be monitoring how well the shunt is performing. These tasks can be achieved by implementing an agent approach in designing this system. Such system would help us to understand more about the dynamics of hydrocephalus.
Hydrocephalus is caused by blockage or reabsorption difficulty that upsets the natural balance of production and absorption of cerebrospinal fluid in the brain, resulting in a build-up of the fluid in the ventricles of the brain. One of the recent advances in the treatment of hydrocephalus is the invention of a mechatronic valve. The desirability of such valve lies in the potential of having shunt that not only control hydrocephalus but also seeks to treat it. In contrast to current valves, such a valve is regulated based on a time based schedule not on the differential pressure across the valve. Thus the effectiveness of such valve is highly dependant on selecting an appropriate valve schedule that delivers personal dynamic treatment for every individual patient. Providing such a schedule is likely to be one of the obstacles facing the implementation of the mechatronic valve. In this paper, an algorithm is proposed to help in developing such a schedule that dynamically change based on the patients' own intracranial pressure data and a novel figure of merit, thus providing the physician with an easy tool that facilitate the use of the mechatronic valve. The algorithm was implemented in M ATLAB and Simulink. Real ICP data for three hydrocephalus patients (before shunting) were used to test this algorithm and the resulted schedules along with the resulted intracranial pressure data have illustrated the effectiveness of the algorithm in providing schedule that maintain ICP within the normal limits.
When passive shunts, which divert cerebrospinal fluid (CSF) from the ventricles in the brain to another part of the body, were developed, apparently they change favourably the treatment of hydrocephalus, then it becomes of great importance to overcome the drawbacks of such shunts, and the gradual rising use of various shunts are accompanied by total shunt dependency with several problems and shortcomings has understandably become obvious among physicians as well as surgeons to rehabilitate and upgrade these shunts. There is a little use of carrying out arrested hydrocephalus which is subject to many aspects, ranging from problems of immediate clinical concern to the more unknowable areas of cerebrospinal fluid CSF dynamics, and it is not always as easy to define indications for arrested hydrocephalus or to evaluate the results of such treatment. However, it is important to attempt to define as precisely as possible a technique to measure the ability of arresting hydrocephalus, while current solutions estimations are based on long time procedure, evaluate parameters such as head growth, or ventricle sizes using CT or MRI scan. This paper proposes a new treatment approach and shunting system that helps improving diagnosis and treatment of Hydrocephalus patients. This approach suggests a developing and utilising an intelligent shunt agent (i-Shunt) that can learn from the patient's status and initiate a weaning program, and based on the response evaluation, the parameters of the shunt can be modified to accommodate the patient's needs. Therefore, a novel shunt could be build to satisfy the patient's need instantaneously by keeping the intracranial pressure (ICP) within normal levels, where it is actually directed toward shunt independency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.