The significant role seagrass meadows play in supporting fisheries productivity and food security across the globe is not adequately reflected in the decisions made by authorities with statutory responsibility for their management. We provide a unique global analysis of three data sources to present the case for why seagrass meadows need targeted policy to recognize and protect their role in supporting fisheries production and food security. (1) Seagrass meadows provide valuable nursery habitat to over 1/5th of the world's largest 25 fisheries, including Walleye Pollock, the most landed species on the planet. (2) In complex small-scale fisheries from around the world (poorly represented in fisheries statistics), we present evidence that many of those in proximity to seagrass are supported to a large degree by these habitats. (3) We reveal how intertidal fishing activity in seagrass is a global phenomenon, often directly supporting human livelihoods. Our study demonstrates that seagrasses should be recognized and managed to maintain and maximize their role in global fisheries production. The chasm that exists between coastal habitat conservation and fisheries management needs to be filled to maximize the chances of seagrass meadows supporting fisheries, so that they can continue to support human wellbeing.
Seagrass meadows globally are under pressure with worldwide loss and degradation, but there is a growing recognition of the global importance of seagrass ecosystem services, particularly as a major carbon sink and as fisheries habitat. Estimates of global seagrass spatial distribution differ greatly throughout the published literature, ranging from 177 000 to 600 000 km2 with models suggesting potential distribution an order of magnitude higher. The requirements of the Paris Climate Agreement by outlining National Determined Contributions (NDC’s) to reduce emissions is placing an increased global focus on the spatial extent, loss and restoration of seagrass meadows. Now more than ever there is a need to provide a more accurate and consistent measure of the global spatial distribution of seagrass. There is also a need to be able to assess the global spread of other seagrass ecosystem services and in their extension, the values of these services. In this study, by rationalising and updating a range of existing datasets of seagrass distribution around the globe, we have estimated with Moderate to High confidence the global seagrass area to date as 160 387 km2, but possibly 266 562 km2 with lower confidence. We break this global estimate down to a national level with a detailed analysis of the current state of mapped distribution and estimates of seagrass area per country. Accurate estimates, however, are challenged by large areas remaining unmapped and inconsistent measures being used. Through the examination of current global maps, we are able to propose a pathway forward for improving mapping of this important resource. More accurate measure of global #seagrass distribution, critical for assessing current state and trends
Seagrass meadows support fisheries through provision of nursery areas and trophic subsidies to adjacent habitats. As shallow coastal habitats, they also provide key fishing grounds; however, the nature and extent of such exploitation are poorly understood.These productive meadows are being degraded globally at rapid rates. For degradation to cease, there needs to be better appreciation for the value of these habitats in supporting global fisheries. Here, we provide the first global scale study demonstrating the extent, importance and nature of fisheries exploitation of seagrass meadows. Due to a paucity of available data, the study used a global expert survey to demonstrate the widespread significance of seagrass-based fishing activity. Our study finds that seagrass-based fisheries are globally important and present virtually wherever seagrass exists, supporting subsistence, commercial and recreational activity. A wide range of fishing methods and gear is used reflecting the spatial distribution patterns of seagrass meadows, and their depth ranges from intertidal (accessible by foot) to relatively deep water (where commercial trawls can operate). Seagrass meadows are multispecies fishing grounds targeted by fishers for any fish or invertebrate species that can be eaten, sold or used as bait. In the coastal communities of developing countries, the importance of the nearshore seagrass fishery for livelihoods and well-being is irrefutable. In developed countries, the seagrass fishery is often recreational and/or more target species specific. Regardless of location, this study is the first to highlight collectively the indiscriminate nature and global scale of seagrass fisheries and the diversity of exploitative methods employed to extract seagrass-associated resources. Evidence presented emphasizes the need for targeted management to support continued viability of seagrass meadows as a global ecosystem service provider. K E Y W O R D Sfishing gear, fishing vessel, gleaning, recreational fishing, small-scale fisheries, subsistence fisheries | INTRODUCTIONFisheries are vital for the maintenance of global food security (Pauly, Watson, & Alder, 2005;Rice & Garcia, 2011). The ecosystems that support fisheries productivity are therefore essential for maintaining global food supply. Available information on small-scale artisanal and recreational fisheries is, however, scarce compared to industrial fisheries, which is because catches are poorly reported, harder to track, andThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. | NORDLUND et aL.the available data less accessible and more difficult to interpret (Worm et al., 2009). Here, small-scale artisanal fisheries are defined as traditional fisheries involving fishing households, using relatively small gear size and vessels and low-level technology. They can be subsistence or commercial fisheries (Cochrane & Garcia, ...
Globally, seagrass ecosystems are considered major blue carbon sinks and thus indirect contributors to climate change mitigation. Quantitative estimates and multi-scale appraisals of sources that underlie long-term storage of sedimentary carbon are vital for understanding coastal carbon dynamics. Across a tropical-subtropical coastal continuum in the Western Indian Ocean, we estimated organic (C org ) and inorganic (C carb ) carbon stocks in seagrass sediment. Quantified levels and variability of the two carbon stocks were evaluated with regard to the relative importance of environmental attributes in terms of plant-sediment properties and landscape configuration. The explored seagrass habitats encompassed low to moderate levels of sedimentary C org (ranging from 0.20 to 1.44% on average depending on species-and site-specific variability) but higher than unvegetated areas (ranging from 0.09 to 0.33% depending on site-specific variability), suggesting that some of the seagrass areas (at tropical Zanzibar in particular) are potentially important as carbon sinks. The amount of sedimentary inorganic carbon as carbonate (C carb ) clearly corresponded to C org levels, and as carbonates may represent a carbon source, this could diminish the strength of seagrass sediments as carbon sinks in the region. Partial least squares modelling indicated that variations in sedimentary C org and C carb stocks in seagrass habitats were pri- Electronic supplementary material: The online version of this article (doi:10.1007/s10021-017-0170-8) contains supplementary material, which is available to authorized users. Author contributions MG, MB, and HWL conceived and designed the study. MG, LDL, GSS, ME, EA, LMR, SB, and LMN performed field research and laboratory analyses. MG, LDL, MD, GSS, AK, and MB analysed data. MG led the writing of the paper with substantial input from MB, MD, and LDL; other authors commented on and edited the manuscript.*Corresponding author; e-mail: martin.gullstrom@su.se Ecosystems (2018) 21: 551-566 DOI: 10.1007/s10021-017-0170-8 Ó 2017 The Author(s). This article is an open access publication 551marily predicted by sediment density (indicating a negative relationship with the content of carbon stocks) and landscape configuration (indicating a positive effect of seagrass meadow area, relative to the area of other major coastal habitats, on carbon stocks), while seagrass structural complexity also contributed, though to a lesser extent, to model performance. The findings suggest that accurate carbon sink assessments require an understanding of plant-sediment processes as well as better knowledge of how sedimentary carbon dynamics are driven by cross-habitat links and sink-source relationships in a scale-dependent landscape context, which should be a priority for carbon sink conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.