Here, we report a retrospective series of 47 EBV-positive diffuse large B-cell lymphoma associated with advanced age. Histopathology allowed to the identification of different histological patterns: cases with polymorphic diffuse large B-cell lymphoma (29 cases), Hodgkin-like (8 cases) and polymorphic lymphoproliferative disorder-like (9 cases) patterns. One case was purely monomorphic diffuse large B-cell lymphoma. We show that this lymphoma type is a neoplasm with prominent classical and alternative nuclear factor-kB pathway activation in neoplastic cells (79% of the cases showed nuclear staining for p105/p50, 74% for p100/p52 and 63% for both proteins), with higher frequency than that observed in a control series of EBV-negative diffuse large B-cell lymphoma (v 2 o0.001). Most cases showed an activated phenotype (95% non-germinal center (Hans algorithm); 78% activated B cell (Choi algorithm)). Clonality testing demonstrated IgH and/or K/Kde/L monoclonal rearrangements in 64% of cases and clonal T-cell populations in 24% of cases. C-MYC (1 case), BCL6 (2 cases) or IgH (3 cases) translocations were detected by FISH in 18% cases. These tumors had a poor overall survival and progression-free survival (the estimated 2-year overall survival was 40±10% and the estimated 2-year progression-free survival was 36±9%). Thus, alternative therapies, based on the tumor biology, need to be tested in patients with EBV-positive diffuse large B-cell lymphoma of the elderly. Modern Pathology (2012) 25, 968-982;
ObjectivesGenetic variations in TNFAIP3 (A20) de-ubiquitinase (DUB) domain increase the risk of systemic lupus erythematosus (SLE) and rheumatoid arthritis. A20 is a negative regulator of NF-κB but the role of its DUB domain and related genetic variants remain unclear. We aimed to study the functional effects of A20 DUB-domain alterations in immune cells and understand its link to SLE pathogenesis.MethodsCRISPR/Cas9 was used to generate human U937 monocytes with A20 DUB-inactivating C103A knock-in (KI) mutation. Whole genome RNA-sequencing was used to identify differentially expressed genes between WT and C103A KI cells. Functional studies were performed in A20 C103A U937 cells and in immune cells from A20 C103A mice and genotyped healthy individuals with A20 DUB polymorphism rs2230926. Neutrophil extracellular trap (NET) formation was addressed ex vivo in neutrophils from A20 C103A mice and SLE-patients with rs2230926.ResultsGenetic disruption of A20 DUB domain in human and murine myeloid cells did not give rise to enhanced NF-κB signalling. Instead, cells with C103A mutation or rs2230926 polymorphism presented an upregulated expression of PADI4, an enzyme regulating protein citrullination and NET formation, two key mechanisms in autoimmune pathology. A20 C103A cells exhibited enhanced protein citrullination and extracellular trap formation, which could be suppressed by selective PAD4 inhibition. Moreover, SLE-patients with rs2230926 showed increased NETs and increased frequency of autoantibodies to citrullinated epitopes.ConclusionsWe propose that genetic alterations disrupting the A20 DUB domain mediate increased susceptibility to SLE through the upregulation of PADI4 with resultant protein citrullination and extracellular trap formation.
Purpose: Peripheral T-cell lymphomas (PTCL) are a heterogeneous entity of neoplasms with poor prognosis, a lack of effective therapies, and a largely unknown molecular pathology. Deregulated NF-kB activity has been associated with several lymphoproliferative diseases, but its importance in T-cell lymphomagenesis is poorly understood. We investigated the function of the NF-kB-inducing kinase (NIK), in this pathway and its role as a potential molecular target in T-cell lymphomas.Experimental Design: We used immunohistochemistry to analyze the expression of different NF-kB members in primary human PTCL samples and to study its clinical impact. With the aim of inhibiting the pathway, we used genetic silencing of NIK in several T-cell lymphoma cell lines and observed its effect on downstream targets and cell viability.Results: We showed that the NF-kB pathway was activated in a subset of PTCLs associated with poor overall survival. NIK was overexpressed in a number of PTCL cell lines and primary samples, and a pivotal role for NIK in the survival of these tumor cells was unveiled. NIK depletion led to a dramatic induction of apoptosis in NIK-overexpressing cell lines and also showed a more pronounced effect on cell survival than inhibitor of kappa B kinase (IKK) knockdown. NIK silencing induced a blockage of both classical and alternative NF-kB activation and reduced expression of several prosurvival and antiapoptotic factors.Conclusions: The results of the present study indicate that NIK could be a promising therapeutic target in these aggressive malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.