BackgroundBlood pressure (BP) is associated with early atherosclerosis and plaque
rupture because the BP variability can significantly affect the blood flow
velocity and shear stress over the plaque. However, the mechanical response of BP
variability to the plaque remains unclear. Therefore, we investigated the
correlation between different maximum systolic blood pressure (SBP) and the stress
distribution on plaque, as well as the stress over the plaque and blood velocity
around the plaque using different BP variations, which are the BP variability in
different phases during one cardiac cycle and beat-to-beat BP variability.MethodWe established a two-dimensional artery model with stenosis at the degree of
62.5%. Eight combinations of pulsatile pressure gradients between the inflow and
outflow were implemented at the model. Three levels of fibrous cap thickness were
taken into consideration to investigate the additional effect on the BP
variability. Wall shear stress and stress/strain distribution over the plaque were
derived as well as the oscillation shear index (OSI) to analyze the impact of the
changing rate of BP.ResultThe stresses at diastole were 2.5% ± 1.8% lower than that at systole under the
same pressure drop during one cycle. It was also found that elevated SBP might
cause the immediate increment of stress in the present cycle (292% ± 72.3%), but
slight reduction in the successive cycle (0.48% ± 0.4%).ConclusionThe stress/strain distribution over the plaque is sensitive to the BP
variability during one cardiac cycle, and the beat-to-beat BP variability could
cause considerable impact on the progression of atherosclerosis in
long-term.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.