In this paper we consider a real life Vehicle Routing Problem inspired by the gas delivery industry in the United Kingdom. The problem is characterized by heterogeneous vehicle fleet, demanddependent service times, maximum allowable overtime and a special light load requirement. A mathematical formulation of the problem is developed and optimal solutions for small sized instances are found. A new learning-based Population Variable Neighbourhood Search algorithm is designed to address this real life logistic problem. To the best of our knowledge Adaptive Memory has not been hybridized with a classical iterative memoryless method. In this paper we devise and analyse empirically a new and effective hybridization search that considers both memory extraction and exploitation. In terms of practical implications, we show that on a daily basis up to 8% cost savings on average can be achieved when overtime and light load requirements are considered in the decision making process. Moreover, accommodating for allowable overtime has shown to yield 12% better average average utilization of the vehicle load, without a significant increase in running costs. We also further discuss some managerial insights and trade-offs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.