All sensory information is encoded in neural spike trains. It is unknown how the brain utilizes this neural code to drive behavior. Here, we unravel the decoding rules of the brain at the most elementary level by linking behavioral decisions to retinal output signals in a single-photon detection task. A transgenic mouse line allowed us to separate the two primary retinal outputs, ON and OFF pathways, carrying information about photon absorptions as increases and decreases in spiking, respectively. We measured the sensitivity limit of rods and the most sensitive ON and OFF ganglion cells and correlated these results with visually guided behavior using markerless head and eye tracking. We show that behavior relies only on the ON pathway even when the OFF pathway would allow higher sensitivity. Paradoxically, behavior does not rely on the spike code with maximal information but instead relies on a decoding strategy based on increases in spiking.
Visually guided behaviour at its sensitivity limit relies on single-photon responses originating in a small number of rod photoreceptors. For decades, researchers have debated the neural mechanisms and noise sources that underlie this striking sensitivity. To address this question, we need to understand the constraints arising from the retinal output signals provided by distinct retinal ganglion cell types. It has recently been shown in the primate retina that On and Off parasol ganglion cells, the cell types likely to underlie light detection at the absolute visual threshold, differ fundamentally not only in response polarity, but also in the way they handle single-photon responses originating in rods. The On pathway provides the brain with a thresholded, low-noise readout and the Off pathway with a noisy, linear readout. We outline the mechanistic basis of these different coding strategies and analyse their implications for detecting the weakest light signals. We show that high-fidelity, nonlinear signal processing in the On pathway comes with costs: more single-photon responses are lost and their propagation is delayed compared with the Off pathway. On the other hand, the responses of On ganglion cells allow better intensity discrimination compared with the Off ganglion cell responses near visual threshold.This article is part of the themed issue ‘Vision in dim light’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.