The true programmed mechanisms of delayed neuronal death induced by global cerebral ischemia/reperfusion injury remain incompletely characterized. Autophagic cell death and programmed necrosis are 2 kinds of programmed cell death distinct from apoptosis. Here, we studied the death mechanisms of hippocampal cornu ammonis 1 neuronal death after a 20-minute severe global ischemia/reperfusion injury in young adult rats and the effects of 3-methyladenine (3-MA), a widely used inhibitor of autophagy. The morphological changes detected by electron microscopy, together with the activation of autophagy, transferase-mediated UTP nick end-labeling-positive neurons, and delayed death, demonstrated that cornu ammonis 1 neuronal death induced in this paradigm was programmed necrosis. No significant activation of caspase-3 after injury was detected by Western blot and immunohistochemistry. Treatment with 3-MA provided time-dependent protection against cornu ammonis 1 neuronal death at 7 days of reperfusion when it was administered before ischemia; administration 60 minutes after reperfusion was not beneficial. The redistribution of the lysosomal enzyme cathepsin B after injury was inhibited by 3-MA administered before ischemia, suggesting that this might be another important mechanism for the protective effect of 3-MA in ischemic neuronal injury.
BackgroundSea cucumbers (Holothuroidea; Echinodermata) have the capacity to regenerate lost tissues and organs. Although the histological and cytological aspects of intestine regeneration have been extensively studied, little is known of the genetic mechanisms involved. There has, however, been a renewed effort to develop a database of Expressed Sequence Tags (ESTs) in Apostichopus japonicus, an economically-important species that occurs in China. This is important for studies on genetic breeding, molecular markers and special physiological phenomena. We have also constructed a library of ESTs obtained from the regenerative body wall and intestine of A. japonicus. The database has increased to ∼30000 ESTs.ResultsWe used RNA-Seq to determine gene expression profiles associated with intestinal regeneration in A. japonicus at 3, 7, 14 and 21 days post evisceration (dpe). This was compared to profiles obtained from a normally-functioning intestine. Approximately 5 million (M) reads were sequenced in every library. Over 2400 up-regulated genes (>10%) and over 1000 down-regulated genes (∼5%) were observed at 3 and 7dpe (log2Ratio≥1, FDR≤0.001). Specific “Go terms” revealed that the DEGs (Differentially Expressed Genes) performed an important function at every regeneration stage. Besides some expected pathways (for example, Ribosome and Spliceosome pathway term), the “Notch signaling pathway,” the “ECM-receptor interaction” and the “Cytokine-cytokine receptor interaction” were significantly enriched. We also investigated the expression profiles of developmental genes, ECM-associated genes and Cytoskeletal genes. Twenty of the most important differentially expressed genes (DEGs) were verified by Real-time PCR, which resulted in a trend concordance of almost 100% between the two techniques.ConclusionOur studies demonstrated dynamic changes in global gene expression during intestine regeneration and presented a series of candidate genes and enriched pathways that contribute to intestine regeneration in sea cucumbers. This provides a foundation for future studies on the genetics/molecular mechanisms associated with intestine regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.