Aim: To assess the m6A methylome in mouse fatty liver induced by a high-fat diet (HFD). Materials & methods: MeRIP-seq was performed to identify differences in the m6A methylomes between the normal liver and fatty liver induced by an HFD. Results: As compared with the control group, the upmethylated coding genes upon feeding an HFD were primarily enriched in processes associated with lipid metabolism, while genes with downmethylation were enriched in processes associated with metabolism and translation. Furthermore, many RNA-binding proteins that potentially bind to differentially methylated m6A sites were mainly annotated in processes of RNA splicing. Conclusion: These findings suggest that differential m6A methylation may act on functional genes through RNA-binding proteins to regulate the metabolism of lipids in fatty liver disease.
ObjectivesCurrent studies have revealed that long non-coding RNA plays a crucial role in fat metabolism. However, the difference of lncRNA between lean (Duroc) and obese (Luchuan) pig remain undefined. Here, we investigated the expressional profile of lncRNA in these two pigs and discussed the relationship between lncRNA and fat deposition.Materials and MethodsThe Chinese Luchuan pig has a dramatic differences in backfat thickness as compared with Duroc pig. In this study, 4868 lncRNA transcripts (including 3235 novel transcripts) were identified. We determined that patterns of differently expressed lncRNAs and mRNAs are strongly tissue-specific. The differentially expressed lncRNAs in adipose tissue have 794 potential target genes, which are involved in adipocytokine signaling pathways, the PI3k-Akt signaling pathway, and calcium signaling pathways. In addition, differentially expressed lncRNAs were located to 13 adipose-related quantitative trait loci which include 65 QTL_ID. Subsequently, lncRNA and mRNA in the same QTL_ID were analyzed and their co-expression in two QTL_ID were confirmed by qPCR.ConclusionsOur study provides an insight into mechanism behind the fat metabolic differences between the two breeds and lays an important groundwork for further research regarding the regulatory role of lncRNA in obesity development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.