Organic luminescent materials with the ability to reversibly switch the luminescence when subjected to external stimuli have attracted considerable interest in recent years. However, the examples of luminescent materials that exhibit multiresponsive properties are rarely reported. In this work, a new stimuli‐responsive dye P1 is designed and synthesized with two identical chromophores of naphthalimide, one at each side of an amidoamine‐based spacer. This amide‐rich molecule offers many possibilities for forming intra‐ and intermolecular hydrogen bond interactions. Particularly, P1 has an intrinsic property of cocrystallizing with methanol. Compared with the pristine P1 sample, the as‐prepared two‐component cocrystalline material displays an exceptive deep‐blue emission, which is extremely rare among naphthalimide‐based molecules in the solid state. Furthermore, the target material exhibits an obvious mechanochromic fluorescent behavior and a large spectral shift under force stimuli. On the other hand, the cocrystalline material shows an unusual “turn off” thermochromic luminescence accompanied by solvent evaporation. Moreover, using external stimuli to reversibly manipulate fluorescent quantum yields is rarely reported to date. The results demonstrate the feasibility of a new design strategy for solid‐state luminescence switching materials: the incorporation of solvents into organic compounds by cocrystallization to obtain a crystalline state luminescence system.
Near-infrared (NIR) microlasers play a significant role in telecommunication and biomedical tissue imaging. However, it remains a big challenge to realize NIR microlasers because of the difficulty in preparing highly efficient NIR luminescent materials and perfect optical resonators. Here, we propose a molecular design strategy to creatively realize the first spiropyrane (SP)-based NIR microlasers with low threshold from self-assembled microsphercial caps. The tetraphenylethylene (TPE) moiety with a highly twisted conformation provides a large free volume to facilitate the photoisomerization process of SP and enhance NIR emission of merocyanine in the solid state. Moreover, selfassembled TPE−SP microsphercial caps simultaneously serve as gain media and resonant microcavities, providing optical gain and feedback for NIR laser oscillations with a low threshold (3.68 μJ/cm 2 ). These results are beneficial for deeply understanding the SP microstructures-lasing emission characteristic relationship and provide a useful guideline for the rational molecular design of NIR microlasers with special functionalities.
Biomolecules, such as proteins and peptides, can be self-assembled. They are widely distributed, easy to obtain, and biocompatible. However, the self-assembly of proteins and peptides has disadvantages, such as difficulty in obtaining high quantities of materials, high cost, polydispersity, and purification limitations. The difficulties in using proteins and peptides as functional materials make it more complicate to arrange assembled nanostructures at both microscopic and macroscopic scales. Amino acids, as the smallest constituent of proteins and the smallest constituent in the bottom-up approach, are the smallest building blocks that can be self-assembled. The self-assembly of single amino acids has the advantages of low synthesis cost, simple modeling, excellent biocompatibility and biodegradability in vivo. In addition, amino acids can be assembled with other components to meet multiple scientific needs. However, using these simple building blocks to design attractive materials remains a challenge due to the simplicity of the amino acids. Most of the review articles about self-assembly focus on large molecules, such as peptides and proteins. The preparation of complicated materials by self-assembly of amino acids has not yet been evaluated. Therefore, it is of great significance to systematically summarize the literature of amino acid self-assembly. This article reviews the recent advances in amino acid self-assembly regarding amino acid self-assembly, functional amino acid self-assembly, amino acid coordination self-assembly, and amino acid regulatory functional molecule self-assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.