Molecular diffusion in water is a physical transport mechanism that plays an important role in many environmental processes. As the abundances of the chemically inert noble gases and their isotopes are controlled only by physical processes, they are ideal tracers for gas transfer processes in aquatic systems. Molecular diffusion in water is often thought to cause the mass-dependent fractionation of noble gas isotope ratios, e.g. 20 Ne/ 22 Ne and 36 Ar/ 40 Ar, under the assumption that the isotopic fractionation of gases in water can be adequately described in terms of a "square root relation", i.e. in terms of the reciprocal of the square root of the ratio of their atomic masses. To quantify reliably the fractionation of 20 Ne/ 22 Ne and 36 Ar/ 40 Ar we determined the change in the isotope ratios of Ne and Ar after
The investigation of regionally extensive groundwater systems in remote areas is hindered by a shortage of data due to a sparse observation network, which limits our understanding of the hydrogeological processes in arid regions. The study used a multidisciplinary approach to determine hydraulic connectivity between the Great Artesian Basin (GAB) and the underlying Arckaringa Basin in the desert region of Central Australia. In order to manage the impacts of groundwater abstraction from the Arckaringa Basin, it is vital to understand its connectivity with the GAB (upper aquifer), as the latter supports local pastoral stations and groundwaterdependent springs with unique endemic flora and fauna. The study is based on the collation of available geological information, a detailed analysis of hydraulic data, and data on environmental tracers. Enhanced inter-aquifer leakage in the centre of the study area was identified, as well as recharge to the GAB from ephemeral rivers and waterholes. Throughout the rest of the study area, inter-aquifer leakage is likely controlled by diffuse inter-aquifer leakage, but the coarse spatial resolution means that the presence of additional enhanced inter-aquifer leakage sites cannot be excluded. This study makes the case that a multi-tracer approach along with groundwater hydraulics and geology provides a tool-set to investigate enhanced inter-aquifer leakage even in a groundwater basin with a paucity of data. A particular problem encountered in this study was the ambiguous interpretation of different age tracers, which is attributed to diffusive transport across flow paths caused by low recharge rates.
Molecular diffusion is a key transport process for noble gases in water. Such diffusive transport is often thought to cause a mass-dependent fractionation of noble gas isotopes that is inversely proportional to the square root of the ratio of their atomic mass, referred to as the square root relation. Previous studies, challenged the commonly held assumption that the square root relation adequately describes the behaviour of noble gas isotopes diffusing through water. However, the effect of diffusion on noble gas isotopes has only been determined experimentally for He, Ne and Ar to date, whereas the extent of fractionation of Kr and Xe has not been measured. In the present study the fractionation of Kr and Xe isotopes diffusing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.