The aim of this work was to study the effect of olive powder combined with high hydrostatic pressure (HHP) on the inactivation of Bacillus cereus spores, to use it as an additional control hurdle in beverages pasteurised by this technology. With this purpose, reference medium prepared at different concentrations of olive powder was inoculated with B. cereus spores and subjected to different pressure treatments. The outgrowth capacity of the treated spores was then determined at 20°C and 32°C. The addition of olive powder was found to slightly reduce the effectiveness of HHP, although in post-treatment storage there was an increased bacteriostatic effect in the samples with 2.5% of olive powder at both temperatures in the samples pressurised at 400 and 500 MPa, and only at 20°C in the samples pressurised at 200 MPa. The addition of olive powder therefore had an additive effect with storage temperature and HHP processing and could act as an additional control hurdle during the shelf-life of products pasteurised by HHP technologies or in the case of cold-chain breakage.
This study puts a focus on the influence of microbial in situ heteropolysaccharide (HePS) formation on the quality of raw fermented sausages (salami). Since exopolysaccharide‐production is often triggered by sub‐optimal growth conditions, the influence of different fermentation temperatures was also investigated. For this reason, the sausage batter was inoculated with (Lactobacillus plantarum TMW 1.1478) or without (L. sakei TMW 1.2037; control) a HePS‐producing starter culture (inoculation concentration ~108 CFU/g), and the sausages fermented at either 10, 16, or 24°C (7 days), followed by a drying period at 14°C until the final weight loss of 31% was reached. Microbial growth, pH, and weight loss development were monitored and the products further characterized using texture profile analysis and a sensory test. HePS in the salami matrix were determined using confocal laser scanning microscopy and a semi‐quantitative data interpretation approach. Sausages containing L. plantarum were found to be significantly (p < .05) softer compared with control samples, which was also confirmed in the sensory analysis. The different fermentation temperatures had an influence on the drying speed. Here, sausages produced with L. plantarum needed more time to reach the final weight loss of 31% as compared to control samples, which could be attributed to the presence of exopolysaccharides in the matrix (p < .05). Using HePS‐forming starter cultures in raw fermented sausage manufacturing can lead to products with a softer texture (undesired in Europe) depending on the strain and processing conditions used, highlighting the importance of a suitable starter culture selection in food processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.