Multiplexed and spatially resolved single‐cell analyses that intend to study tissue heterogeneity and cell organization invariably face as a first step the challenge of cell classification. Accuracy and reproducibility are important for the downstream process of counting cells, quantifying cell–cell interactions, and extracting information on disease‐specific localized cell niches. Novel staining techniques make it possible to visualize and quantify large numbers of cell‐specific molecular markers in parallel. However, due to variations in sample handling and artifacts from staining and scanning, cells of the same type may present different marker profiles both within and across samples. We address multiplexed immunofluorescence data from tissue microarrays of low‐grade gliomas and present a methodology using two different machine learning architectures and features insensitive to illumination to perform cell classification. The fully automated cell classification provides a measure of confidence for the decision and requires a comparably small annotated data set for training, which can be created using freely available tools. Using the proposed method, we reached an accuracy of 83.1% on cell classification without the need for standardization of samples. Using our confidence measure, cells with low‐confidence classifications could be excluded, pushing the classification accuracy to 94.5%. Next, we used the cell classification results to search for cell niches with an unsupervised learning approach based on graph neural networks. We show that the approach can re‐detect specialized tissue niches in previously published data, and that our proposed cell classification leads to niche definitions that may be relevant for sub‐groups of glioma, if applied to larger data sets.
Large-scale multiplex tissue analysis aims to understand processes such as development and tumor formation by studying the occurrence and interaction of cells in local environments in, for example, tissue samples from patient cohorts. A typical procedure in the analysis is to delineate individual cells, classify them into cell types, and analyze their spatial relationships. All steps come with a number of challenges, and to address them and identify the bottlenecks of the analysis, it is necessary to include quality control tools in the analysis workflow. This makes it possible to optimize the steps and adjust settings in order to get better and more precise results. Additionally, the development of automated approaches for tissue analysis requires visual verification to reduce skepticism with regard to the accuracy of the results. Quality control tools could be used to build users’ trust in automated approaches. In this paper, we present three plugins for visualization and quality control in large-scale multiplex tissue analysis of microscopy images. The first plugin focuses on the quality of cell staining, the second one was made for interactive evaluation and comparison of different cell classification results, and the third one serves for reviewing interactions of different cell types.
Multiplexed and spatially resolved single-cell analyses that intend to study tissue heterogeneity and cell organization invariably face as a first step the challenge of cell classification. Accuracy and reproducibility are important for the downstream process of counting cells, quantifying cell-cell interactions, and extracting information on disease-specific localized cell niches. Novel staining techniques make it possible to visualize and quantify large numbers of cell-specific molecular markers in parallel. However, due to variations in sample handling and artefacts from staining and scanning, cells of the same type may present different marker profiles both within and across samples. We address multiplexed immunofluorescence data from tissue microarrays of low grade gliomas and present a methodology using two different machine learning architectures and features insensitive to illumination to perform cell classification. The fully automated cell classification provides a measure of confidence for the decision and requires a comparably small annotated dataset for training, which can be created using freely available tools. Using the proposed method, we reached an accuracy of 83.5% on cell classification without the need for standardization of samples. Using our confidence measure, cells with low-confidence classifications could be excluded, pushing the classification accuracy to 94.47%. Next, we used the cell classification results to search for cell niches with an unsupervised learning approach based on graph neural networks. We show that the approach can re-detect specialized tissue niches in previously published data, and that our proposed cell classification leads to niche definitions that may be relevant for sub-groups of glioma, if applied to larger datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.