Sphingomyelin synthase 2 (SMS2) is a vital contributor to tissue injury and affects various pathological processes. However, whether SMS2 participates in the modulation of cardiac injury in myocardial infarction has not been determined. This study aimed to evaluate the potential role of SMS2 in the regulation of cardiomyocyte injury induced by hypoxia, an in vitro model for studying myocardial infarction. Our data revealed that SMS2 expression was significantly upregulated in cardiomyocytes in response to hypoxia. Loss-of-function experiments revealed that knockdown of SMS2 markedly restored the viability of cardiomyocytes impaired by hypoxia, and attenuated hypoxia-evoked apoptosis and reactive oxygen species (ROS) generation. In contrast, cardiomyocytes that highly expressed SMS2 were more sensitive to hypoxia-induced injury. Moreover, SMS2 deficiency enhanced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling through inactivation of glycogen synthase kinase-3β. Notably, suppression of Nrf2 markedly abrogated SMS2 knockdown-mediated cardioprotective effects on hypoxia-exposed cardiomyocytes. Our results illustrate that downregulation of SMS2 exerts a cardioprotective function by protecting cardiomyocytes from hypoxia-induced apoptosis and oxidative stress through enhancement of Nrf2 activation. Our study indicates a potential role of SMS2 in the modulation of cardiac injury, which may contribute to the progression of myocardial infarction.
Objective(-)-Epigallocatechin-3-gallate (EGCG) has preventive effects on obesity-related precocious puberty, but its underlying mechanism remains unclear. The aim of this study was to integrate metabolomics and network pharmacology to reveal the mechanism of EGCG in the prevention of obesity-related precocious puberty.Materials and methodsA high-performance liquid chromatography-electrospray ionization ion-trap tandem mass spectrometry (LC-ESI-MS/MS) was used to analyze the impact of EGCG on serum metabolomics and associated metabolic pathways in a randomized controlled trial. Twelve weeks of EGCG capsules were given to obese girls in this trail. Additionally, the targets and pathways of EGCG in preventing obesity-related precocious puberty network pharmacology were predicted using network pharmacology. Finally, the mechanism of EGCG prevention of obesity-related precocious puberty was elucidated through integrated metabolomics and network pharmacology.ResultsSerum metabolomics screened 234 endogenous differential metabolites, and network pharmacology identified a total of 153 common targets. These metabolites and targets mainly enrichment pathways involving endocrine-related pathways (estrogen signaling pathway, insulin resistance, and insulin secretion), and signal transduction (PI3K-Akt, MAPK, and Jak-STAT signaling pathways). The integrated metabolomics and network pharmacology indicated that AKT1, EGFR, ESR1, STAT3, IGF1, and MAPK1 may be key targets for EGCG in preventing obesity-related precocious puberty.ConclusionEGCG may contribute to preventing obesity-related precocious puberty through targets such as AKT1, EGFR, ESR1, STAT3, IGF1, and MAPK1 and multiple signaling pathways, including the estrogen, PI3K-Akt, MAPK, and Jak-STAT pathways. This study provided a theoretical foundation for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.