Podocyte damage is vital for the etiopathogenesis of diabetic nephropathy (DN). Klotho (KL), a multifunctional protein, has been demonstrated to have renoprotective effects; nevertheless, the mechanism for protective effect has not been completely elucidated. Transient receptor potential cation channel subfamily C, member 6 (TRPC6), a potential target of KL, is implicated in glomerular pathophysiology. Here, we sought to determine whether KL could protect against podocyte injury through inhibiting TRPC6 in DN. We found that high glucose (HG) triggered podocyte injury as manifested by actin cytoskeleton damage along with the downregulation of KL and Synaptopodin and the upregulation of TRPC6. KL overexpression reversed HG-induced podocytes injury, whereas cotreatment with TRPC6 activator flufenamic acid (FFA) significantly abrogated the beneficial effects conferred by KL. Moreover, KL knockdown in podocytes resulted in actin cytoskeleton impairment, decreased Synaptopodin expression, and increased TRPC6 expression. In db/db mice, KL overexpression inhibited TRPC6 expression and attenuated diabetes-induced podocyte injury, which was accompanied by decreased albuminuria and ameliorated glomerulosclerosis. Our data provided novel mechanistic insights for KL against DN and highlighted TRPC6 as a new target for KL in podocytes to prevent DN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.