Recent theoretical studies suggested that hydrogen bonds between ions of like charges are of a covalent nature due to the dominating n →σ* charge-transfer (CT) interaction. In this work, energy profiles of typical hydrogen (H) and halogen (X) bonding systems formed from ions of like charges are explored using the block-localized wavefunction (BLW) method, which can derive optimal geometries and wave functions with the CT interaction "turned off." The results demonstrate that the kinetic stability, albeit reduced, is maintained for most investigated systems even after the intermolecular CT interaction is quenched. Further energy decomposition analyses based on the BLW method reveal that, despite a net repulsive Coulomb repulsion, a stabilizing component exists due to the polarization effect that plays significant role in the kinetic stability of all systems. Moreover, the fingerprints of the augmented electrostatic interaction due to polarization are apparent in the variation patterns of the electron density. All in all, much like in standard H- and X-bonds, the stability of such bonds between ions of like charges is governed by the competition between the stabilizing electrostatic and charge transfer interactions and the destabilizing deformation energy and Pauli exchange repulsion. While in most cases of "anti-electrostatic" bonds the CT interaction is of a secondary importance, we also find cases where CT is decisive. As such, this work validates the existence of anti-electrostatic H- and X-bonds. © 2017 Wiley Periodicals, Inc.
High-level ab initio quantum chemical (QC) molecular potential energy surfaces (PESs) are crucial for accurately simulating molecular rotation-vibration spectra. Machine learning (ML) can help alleviate the cost of constructing such PESs, but requires access to the original ab initio PES data, namely potential energies computed on high-density grids of nuclear geometries. In this work, we present a new structured PES database called VIB5, which contains high-quality ab initio data on 5 small polyatomic molecules of astrophysical significance (CH3Cl, CH4, SiH4, CH3F, and NaOH). The VIB5 database is based on previously used PESs, which, however, are either publicly unavailable or lacking key information to make them suitable for ML applications. The VIB5 database provides tens of thousands of grid points for each molecule with theoretical best estimates of potential energies along with their constituent energy correction terms and a data-extraction script. In addition, new complementary QC calculations of energies and energy gradients have been performed to provide a consistent database, which, e.g., can be used for gradient-based ML methods.
A novel adiabatic-to-diabatic (ATD) transformation strategy, namely, the extended Mulliken–Hush (XMH) method, is proposed to evaluate diabatic properties including electronic couplings, potential energy surfaces, and their crossings. The XMH method is developed by adopting our recently proposed ATD transformation formula of a general vectorial physical observable, in which a useful ATD transformation is further determined by using an auxiliary dipole between localized frontier orbitals as a simple approximation of the diabatic transition dipole. The XMH method is simple and practical that provides a flexible way to construct diabatic states. To some extent, it can be regarded as an extension of the generalized Mulliken–Hush (GMH) method since the latter takes a stronger approximation, in which the diabatic transition dipole is assumed to be vanishing. Test calculations on the HeH2 + system show that the electronic couplings predicted by the XMH method are closer to the ones calculated by the valence bond block-diagonalization approach than the GMH ones since the XMH method takes into account both the magnitude and direction of the diabatic transition dipole, which is consistent with the properties of this molecule. In the study of electron transfer in the two kinds of donor-bridge-acceptor systems, the XMH method maintains the simplicity of the GMH method and gives reasonable results even when the latter fails, wherein the diabatic transition dipole is nearly perpendicular to the difference of the initial and final adiabatic dipoles. More importantly, the XMH method can be easily combined with high-level electronic structure methods, in which the properties of the ground and excited states may be more accurately calculated, and hence, one may expect that further development of the XMH method would result in a general computational model for studying electron transfer reactions.
The paper combines the valence bond block diabatization approach (VBBDA) with the idea of orbital breathing. With highly compact wave functions, the breathing orbital valence bond (BOVB) method is applied to investigate several atomic and molecular properties including the electron affinity of F, the adiabatic and diabatic potential energy curves and the dipole moment curves of the two lowest-lying 1Σ+ states, the electronic coupling curve and the crossing distance of the two diabatic states, and the spectroscopic constants of the ground states for LiF. The configuration selection scheme proposed in this work is quite general, requiring only the selection of several de-excitation and excitation orbitals in a sense like the restricted active space self-consistent field method. Practically, this is also the first time that BOVB results are extrapolated to complete basis set limit. Armed with the chemical intuition provided by VB theory, the classic but challenging covalent-ionic interaction in the title molecule is not only conceptually interpreted but is also accurately computed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.