We developed linguistics-driven prediction models to estimate the risk of suicide. These models were generated from unstructured clinical notes taken from a national sample of U.S. Veterans Administration (VA) medical records. We created three matched cohorts: veterans who committed suicide, veterans who used mental health services and did not commit suicide, and veterans who did not use mental health services and did not commit suicide during the observation period (n = 70 in each group). From the clinical notes, we generated datasets of single keywords and multi-word phrases, and constructed prediction models using a machine-learning algorithm based on a genetic programming framework. The resulting inference accuracy was consistently 65% or more. Our data therefore suggests that computerized text analytics can be applied to unstructured medical records to estimate the risk of suicide. The resulting system could allow clinicians to potentially screen seemingly healthy patients at the primary care level, and to continuously evaluate the suicide risk among psychiatric patients.
This paper sketches a technique for improving the rate of convergence of a general oscillatory sequence, and then applies this series acceleration algorithm to the polylogarithm and the Hurwitz zeta function. As such, it may be taken as an extension of the techniques given by Borwein's "An efficient algorithm for computing the Riemann zeta function" by Borwein for computing the Riemann zeta function, to more general series. The algorithm provides a rapid means of evaluating Li s (z) for general values of complex s and a kidney-shaped region of complex z values given by z 2 /(z − 1) < 4. By using the duplication formula and the inversion formula, the range of convergence for the polylogarithm may be extended to the entire complex z-plane, and so the algorithms described here allow for the evaluation of the polylogarithm for all complex s and z values. Alternatively, the Hurwitz zeta can be very rapidly evaluated by means of an Euler-Maclaurin series. The polylogarithm and the Hurwitz zeta are related, in that two evaluations of the one can be used to obtain a value of the other; thus, either algorithm can be used to evaluate either function. The Euler-Maclaurin series is a clear performance winner for the Hurwitz zeta, while the Borwein algorithm is superior for evaluating the polylogarithm in the kidney-shaped region. Both algorithms are superior to the simple Taylor's series or direct summation. The primary, concrete result of this paper is an algorithm allows the exploration of the Hurwitz zeta in the critical strip, where fast algorithms are otherwise unavailable. A discussion of the monodromy group of the polylogarithm is included. L. Vepštas (B)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.