Background: Deep brain stimulation of the subthalamic nucleus (STN-DBS) has been reported to be effective for camptocormia in Parkinson’s disease (PD). However, the association between clinical effectiveness and the stimulated volumes or structural connectivity remains unexplored. Objective: To investigate the effectiveness of STN-DBS for treating camptocormia in PD and its association with volumes of tissue activated (VTA) and structural connectivity. Methods: We reviewed video recordings of patients who had undergone STN-DBS. The total and upper camptocormia (TCC and UCC) angles were measured to quantify changes in camptocormia. The Movement Disorders Society Unified Parkinson’s Disease Rating Scale III (MDS-UPDRS III) was used to assess motor symptoms. Pre- and postoperative brain images were collected for modeling volume of VTA and structural connectivity using Lead-DBS software. Results: Participants included 36 patients with PD (8 with TCC-camptocormia and 2 with UCC-camptocormia) treated with bilateral STN-DBS. After surgery, patients showed a significant improvement in postural alignment at follow-up (mean follow-up duration: 6.0±2.2 months). In the entire sample, higher structural connectivity to the right supplementary motor area (SMA) and right lateral premotor cortex along the dorsal plane (PMd) was associated with larger postsurgical improvements in axial signs and TCC angles after stimulation was turned on. In patients diagnosed with camptocormia, larger improvement in camptocormia angles after STN-DBS was associated with a larger VTA overlap with STN (R = 0.75, p = 0.032). Conclusion: This study suggests that both VTA overlap with STN and structural connectivity to cortical motor regions are associated with the effectiveness of STN-DBS for managing camptocormia in PD.
Objective: To investigate the correlation between preoperative response to the L-dopa challenge test and efficacy of deep brain stimulation (DBS) on motor function in Parkinson’s disease (PD).Methods: We retrospectively reviewed the data of 38 patients with idiopathic PD who underwent DBS surgery with a median follow-up duration of 7 months. Twenty underwent bilateral globus pallidus interna (GPi) DBS, and 18 underwent bilateral subthalamic nucleus (STN) DBS. The Movement Disorder Society Unified Parkinson Disease Rating Scale-Motor Part (MDS UPDRS-III) was assessed before surgery and at the last follow-up in different medication and stimulation conditions, respectively.Results: Pearson’s correlation analysis revealed a positive correlation between preoperative L-dopa challenge responsiveness and GPi-DBS responsiveness on the total score (R2 = 0.283, p = 0.016) but not on the non-tremor total score (R2 = 0.158, p = 0.083) of MDS UPDRS-III. Such correlation remained significant (R2′ = 0.332, p = 0.010) after controlling for age at the time of surgery as confounding factor by partial correlation analysis. The preoperative L-dopa challenge responsiveness was significantly correlated with the tremor-controlling outcome of GPi-DBS (R2 = 0.390, p = 0.003). In contrast, we found a positive correlation between preoperative L-dopa challenge responsiveness and STN-DBS responsiveness on the non-tremor total score (R2 = 0.290, p = 0.021), but not on the total score (R2 = 0.130, p = 0.141) of MDS UPDRS-III. The partial correlation analysis further demonstrated that the predictive value of preoperative L-dopa challenge responsiveness on the non-tremor motor outcome of STN-DBS was eliminated (R2′ = 0.120, p = 0.174) after controlling for age at the time of surgery as confounding factor.Interpretation: The short-term predictive value of preoperative response to the L-dopa challenge test for the motor outcome of GPi-DBS in PD was systematically described. Our findings suggest: (1) a solid therapeutic effect of GPi-DBS in treating L-dopa-responsive tremors; (2) a negative effect of age at the time of surgery on motor outcomes of STN-DBS, (3) a possible preference of STN- to GPi-DBS in L-dopa-resistant tremor control, and (4) a possible preference of GPi- to STN-DBS in elderly PD patients who have a satisfactory dopamine response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.